The modulation of neuronal activity by melatonin: in vitro studies on mouse hippocampal slices. 2001

M V Hogan, and Y El-Sherif, and A Wieraszko
Department of Biology/CSI/IBR Center for Developmental Neuroscience, College of Staten Island/CUNY, New York 10314, USA.

The influence of melatonin on evoked potentials recorded from the CAI field of mouse hippocampal slices was investigated. Melatonin (0.1-2.0 mM) and its analog, 6-chloromelatonin (0.1-0.5 mM) depressed evoked potentials (EPSP and the population spike) in a concentration-dependent manner. The melatonin-induced depression was followed by a slow recovery phase. Since the fiber potential was not affected, it was concluded that melatonin influenced synaptic efficiency and/or cell excitability. Luzindole, an antagonist of MT2 melatonin receptors, although slightly depressing evoked potentials when applied by itself (100 microM), blocked any further inhibition by melatonin when added afterwards. We concluded that melatonin reduced synaptic efficiency and/or excitability of hippocampal neurons most likely through interaction with MT2 melatonin receptors, but other possible mechanisms of melatonin action are also considered.

UI MeSH Term Description Entries
D008297 Male Males
D008550 Melatonin A biogenic amine that is found in animals and plants. In mammals, melatonin is produced by the PINEAL GLAND. Its secretion increases in darkness and decreases during exposure to light. Melatonin is implicated in the regulation of SLEEP, mood, and REPRODUCTION. Melatonin is also an effective antioxidant.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014363 Tryptamines Decarboxylated monoamine derivatives of TRYPTOPHAN. Indolylethylamines,Triptan,Triptans

Related Publications

M V Hogan, and Y El-Sherif, and A Wieraszko
January 1986, Neurobehavioral toxicology and teratology,
M V Hogan, and Y El-Sherif, and A Wieraszko
October 1996, Brain research,
M V Hogan, and Y El-Sherif, and A Wieraszko
October 2003, Life sciences,
M V Hogan, and Y El-Sherif, and A Wieraszko
October 2010, Pflugers Archiv : European journal of physiology,
M V Hogan, and Y El-Sherif, and A Wieraszko
January 2013, PloS one,
M V Hogan, and Y El-Sherif, and A Wieraszko
October 1998, British journal of pharmacology,
M V Hogan, and Y El-Sherif, and A Wieraszko
June 2011, Journal of biological physics,
M V Hogan, and Y El-Sherif, and A Wieraszko
April 1999, British journal of pharmacology,
M V Hogan, and Y El-Sherif, and A Wieraszko
January 1984, Advances in experimental medicine and biology,
M V Hogan, and Y El-Sherif, and A Wieraszko
January 2017, Journal of Ayub Medical College, Abbottabad : JAMC,
Copied contents to your clipboard!