Hepatocellular uptake of taurocholate in the dog. 1975

S Erlinger

The purpose of this study was to examine the hepatocellular extraction of taurocholate and to determine the kinetic characteristics of the uptake process. The uptake of taurocholate by the liver of the intact dog was studied by the multiple-indicator dilution method. 51Cr-labeled red blood cells (a vascular indicator), 125I-labeled albumin (an extravascular reference), and [14C]taurocholate were injected into the portal vein. Different doses of unlabeled taurocholate were included in the injection mixture. Hepatic venous dilution curves were obtained. As a consequence of the hepatic uptake, the outflow recovery of [14C]taurocholate was much reduced when compared to that of albumin, but its recovery increased with increasing doses of taurocholate, suggesting a progressive saturation of the uptake process. The analysis of the dilution curves fitted a three-compartment model system well and no return of the extracted taurocholate to the extracellular space could be detected. The initial space of distribution of taurocholate was 1.22 plus or minus 0.12 (SD) times greater than that of albumin. Analysis of the data for uptake was consistent with Michaelis-Menten kinetics. The calculated initial maximal velocity of uptake (Vmax) was 4.53 mumol times s--1 times 100 g of liver--1 and the dose yielding half-maximal velocity (DK) was 7.11 mumol times 100 g of liver--1. These results are consistent with the hypothesis that the uptake of taurocholate is carrier-mediated. The maximal vilocity of uptake was about six times the known maximal capacity of biliary secretion of taurocholate in the dog.

UI MeSH Term Description Entries
D007275 Injections, Intravenous Injections made into a vein for therapeutic or experimental purposes. Intravenous Injections,Injection, Intravenous,Intravenous Injection
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008102 Liver Circulation The circulation of BLOOD through the LIVER. Hepatic Circulation,Circulation, Liver,Circulation, Hepatic
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000418 Albumins Water-soluble proteins found in egg whites, blood, lymph, and other tissues and fluids. They coagulate upon heating. Albumin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Erlinger
November 2003, Hepatology research : the official journal of the Japan Society of Hepatology,
S Erlinger
January 1975, Gastroenterology,
S Erlinger
October 1968, The American journal of physiology,
S Erlinger
August 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
S Erlinger
January 1987, Clinical science (London, England : 1979),
S Erlinger
August 1981, Biochimica et biophysica acta,
Copied contents to your clipboard!