Fluoroquinolones inhibit preferentially Streptococcus pneumoniae DNA topoisomerase IV than DNA gyrase native proteins. 2000

E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
Unidad de Genética Bacteriana, Consejo Superior de Investigaciones Científicas, Centro Nacional de Biologia Fundamental, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.

The genes encoding the subunits of DNA topoisomerase IV (parC and parE) and DNA gyrase (gyrA and gyrB) of Streptococcus pneumoniae were cloned and overproduced in Escherichia coli by using the T7promoter-T7 RNA polymerase system. The four subunits were separately purified to near homogeneity by column chromatography. Protein purification was achieved by DEAE-sepharose, heparin-agarose, and hydroxylapatite chromatography. DNA topoisomerase IV was reconstituted when ParC and ParE were combined at a 3.8-fold excess of ParE. The reconstituted topoisomerase IV showed to generate efficient ATP-dependent DNA decatenation activity. The DNA gyrase ATP-dependent supercoiling activity was reconstituted by mixing equimolar amounts of the two gyrase subunits. The inhibitory effects of four representative fluoroquinolones on the DNA decatenation activity of topoisomerase IV and DNA supercoiling of gyrase have been examined and compared. All four compounds were more active in inhibiting topoisomerase IV than gyrase. Moreover, there was a positive correlation between the inhibitory activity against topoisomerase IV decatenation and DNA gyrase supercoiling. The classification of the four fluoroquinolones, considering their inhibitory activities in decatenation, supercoiling and growth was the following: clinafloxacin > trovafloxacin > sparfloxacin > ciprofloxacin. These results suggest these drugs primarily target topoisomerase IV of S. pneumoniae, and gyrase secondarily, in agreement with genetic data.

UI MeSH Term Description Entries
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000890 Anti-Infective Agents Substances that prevent infectious agents or organisms from spreading or kill infectious agents in order to prevent the spread of infection. Anti-Infective Agent,Anti-Microbial Agent,Antimicrobial Agent,Microbicide,Microbicides,Anti-Microbial Agents,Antiinfective Agents,Antimicrobial Agents,Agent, Anti-Infective,Agent, Anti-Microbial,Agent, Antimicrobial,Agents, Anti-Infective,Agents, Anti-Microbial,Agents, Antiinfective,Agents, Antimicrobial,Anti Infective Agent,Anti Infective Agents,Anti Microbial Agent,Anti Microbial Agents
D013296 Streptococcus pneumoniae A gram-positive organism found in the upper respiratory tract, inflammatory exudates, and various body fluids of normal and/or diseased humans and, rarely, domestic animals. Diplococcus pneumoniae,Pneumococcus
D059005 Topoisomerase II Inhibitors Compounds that inhibit the activity of DNA TOPOISOMERASE II. Included in this category are a variety of ANTINEOPLASTIC AGENTS which target the eukaryotic form of topoisomerase II and ANTIBACTERIAL AGENTS which target the prokaryotic form of topoisomerase II. DNA Gyrase Inhibitor,DNA Topoisomerase II Inhibitor,Topoisomerase 2 Inhibitors,Topoisomerase II Inhibitor,DNA Gyrase Inhibitors,DNA Topoisomerase II Inhibitors,DNA Type 2 Topoisomerase Inhibitors,Gyrase Inhibitor, DNA,Gyrase Inhibitors, DNA,II Inhibitor, Topoisomerase,Inhibitor, DNA Gyrase,Inhibitor, Topoisomerase II,Inhibitors, DNA Gyrase,Inhibitors, Topoisomerase 2,Inhibitors, Topoisomerase II
D021122 Protein Subunits Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly. Protomers,Protein Subunit,Protomer,Subunit, Protein,Subunits, Protein
D024841 Fluoroquinolones A group of QUINOLONES with at least one fluorine atom and a piperazinyl group. Fluoroquinolone

Related Publications

E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
May 1999, Antimicrobial agents and chemotherapy,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
August 1999, Antimicrobial agents and chemotherapy,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
October 1996, Antimicrobial agents and chemotherapy,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
July 2010, International journal of antimicrobial agents,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
November 1998, Antimicrobial agents and chemotherapy,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
February 1997, Antimicrobial agents and chemotherapy,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
October 2002, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
October 1999, The Journal of antimicrobial chemotherapy,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
October 1996, Antimicrobial agents and chemotherapy,
E Fernandez-Moreira, and D Balas, and I Gonzalez, and A G de la Campa
September 2016, Open biology,
Copied contents to your clipboard!