Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. 2001

Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
Pediatric Cardiology, NYU School of Medicine, New York, NY 10016, USA.

The effects of thyroid hormone (3,3',5-triiodo- L -thyronine, T3) on pacemaker activity were studied with electrophysiological and pharmacological approaches using spontaneously beating neonatal atrial myocytes cultured from 2-day-old rats. Treatment with T3 (10(-8)m) for 24-48 h led to a positive chronotropic effect. The beating rate of T3-treated cells was 244+/-19 beats/min and for control cells it was 122+/-10 beats/min (P<0.05). Action potentials were recorded and showed that the predominant effect of T3 was to increase the diastolic depolarization rate (99.5+/-9.8 in T3-treated group v 44.0+/-7.8 mV/s in untreated group). Some cells that exhibited pacemaker activity lacked a pacemaker current (I(f)) under voltage clamp conditions I(f)was recorded in 5 of 12 spontaneously active control cells and in 6 of 10 T3-treated cells. In those cells exhibiting the pacemaker current, the I(f)density was significantly larger in T3-treated cells (-7.9+/-2.6 pA/pF v-1.8+/-0.5 pA/pF in control). The L-type Ca2+ current density was similar in the two groups (at -7 mV, -7.5+/-1.5 in treated group v-8.6+/-1.0 pA/pF in control). In the presence of T3, the Na+-Ca2+ exchanger current (I(Na/Ca)) density was larger (e.g. at +60 mV, it was 4.8+/-0.5 v 3.5+/-0.2 pA/pF in control cells, P<0.05). As intracellular Ca2+ is extruded from the cell, the electrogenic Na+-Ca2+ exchanger causes a declining inward current, which may contribute to the pacemaker potential-this declining inward current was demonstrated using the action potential voltage clamp technique and was shown to be larger in T3-treated myocytes. Our data demonstrate that thyroid hormone enhances pacemaker activity and that this may be due in part to an increased Na+-Ca2+ exchanger activity.

UI MeSH Term Description Entries
D007477 Ions An atom or group of atoms that have a positive or negative electric charge due to a gain (negative charge) or loss (positive charge) of one or more electrons. Atoms with a positive charge are known as CATIONS; those with a negative charge are ANIONS.
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological

Related Publications

Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
October 2004, Molecular and cellular biochemistry,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
April 1999, Journal of molecular and cellular cardiology,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
January 2003, The Journal of physiology,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
January 1998, Journal of molecular and cellular cardiology,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
December 1997, The Journal of physiology,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
October 1996, Endocrinology,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
November 2023, Physiological reports,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
June 1990, Bioscience reports,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
May 2003, The Journal of membrane biology,
Z Q Sun, and K Ojamaa, and T Y Nakamura, and M Artman, and I Klein, and W A Coetzee
June 1997, The Journal of biological chemistry,
Copied contents to your clipboard!