Investigation on interaction of Achatinin, a 9-O-acetyl sialic acid-binding lectin, with lipopolysaccharide in the innate immunity of Achatina fulica snails. 2000

C Biswas, and D Sinha, and C Mandal
Immunobiology Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, 700032, Calcutta, India.

Achatinin, a 9-O-acetyl sialic acid (9-O-AcSA) binding lectin, has been demonstrated to be synthesized in amoebocytes of Achatina fulica snails. This lectin was affinity-purified from Achatina amoebocytes lysate (AAL); it appeared as a single band on native polyacrylamide gel electrophoresis (PAGE) and showed 16 identical subunits of M.W. 15 kDa on sodium dodecyl sulphate (SDS)-PAGE. It was found to be homologous with an earlier reported lectin, Achatinin-H, derived from hemolymph of A. fulica snails (Sen, G., Mandal, C., 1995. The specificity of the binding site of Achatinin-H, a sialic-acid binding lectin from Achantia fulica. Carbohydr. Res., 268, 115-125). Homology between both lectins was confirmed by their similar electrophoretic mobilities, carbohydrate specificity and cross reactivity on immunodiffusion. Achatinin showed in vitro calcium dependent binding to two 9-O-acetylated sialoglyoconjugates (9-O-AcSG) on lipopolysaccharide (LPS) (Escherichia coli 055: B5) of M.W. 40 kDa and 27.5 kDa, which was abolished following de-O-acetylation. Based on the previously defined narrow sugar specificity of Achatinin towards 9-O-AcSAalpha2-->6GalNAc [Sen, G., Mandal, C., 1995. The specificity of the binding site of Achatinin-H, a sialic-acid binding lectin from Achatina fulica. Carbohydr. Res., 268, 115-125], we conclude that LPS contains this lectinogenic epitope at the terminal sugar moiety. The Achatinin-mediated hemagglutination inhibition of rabbit erythrocytes by LPS further confirmed it. The lectin exhibited bacteriostatic effect on Gram-negative bacteria E. coli, DH5alpha and C600. AAL was earlier reported to undergo coagulation in presence of pg level of LPS (Biswas, C., Mandal, C., 1999. The role of amoebocytes in the endotoxin-mediated coagulation in the innate immunity of Achatina fulica snail, Scand. J. Immunol. 49, 131-138). We now demonstrate that Achatinin participates in LPS-mediated coagulation of AAL as indicated by enhanced release of Achatinin from the LPS stimulated amoebocytes and most importantly, by exhibiting a 77% decline in the coagulation of AAL when depleted of Achatinin. Level of Achatinin sharply declined (17-fold) following injection of LPS (20 microg per snail) to the snails, which was reversible by simultaneous injection of LPS and leupeptin implying the presence of LPS-mediated serine protease activity in Achatinin. This was substantiated when purified Achatinin in vitro showed serine protease activity in the presence of LPS followed by its complete blockage in the presence of leupeptin and phenyl methyl sulphonyl fluoride. Therefore, Achatinin, an abundantly available lectin at multiple sites of A. fulica, by virtue of its interaction with LPS, essentially plays a crucial role in the innate immune protection of A. fulica snails.

UI MeSH Term Description Entries
D007113 Immunity, Innate The capacity of a normal organism to remain unaffected by microorganisms and their toxins. It results from the presence of naturally occurring ANTI-INFECTIVE AGENTS, constitutional factors such as BODY TEMPERATURE and immediate acting immune cells such as NATURAL KILLER CELLS. Immunity, Native,Immunity, Natural,Immunity, Non-Specific,Resistance, Natural,Innate Immune Response,Innate Immunity,Immune Response, Innate,Immune Responses, Innate,Immunity, Non Specific,Innate Immune Responses,Native Immunity,Natural Immunity,Natural Resistance,Non-Specific Immunity
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006458 Hemolymph The blood/lymphlike nutrient fluid of some invertebrates. Hemolymphs
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012794 Sialic Acids A group of naturally occurring N-and O-acyl derivatives of the deoxyamino sugar neuraminic acid. They are ubiquitously distributed in many tissues. N-Acetylneuraminic Acids,Acids, N-Acetylneuraminic,Acids, Sialic,N Acetylneuraminic Acids
D012908 Snails Marine, freshwater, or terrestrial mollusks of the class Gastropoda. Most have an enclosing spiral shell, and several genera harbor parasites pathogenic to man. Snail
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal

Related Publications

C Biswas, and D Sinha, and C Mandal
March 1995, Carbohydrate research,
C Biswas, and D Sinha, and C Mandal
August 1986, Molecular and cellular biochemistry,
C Biswas, and D Sinha, and C Mandal
October 1987, Biochemical and biophysical research communications,
C Biswas, and D Sinha, and C Mandal
February 1999, Scandinavian journal of immunology,
C Biswas, and D Sinha, and C Mandal
November 1992, Molecular and cellular biochemistry,
C Biswas, and D Sinha, and C Mandal
February 1953, Science (New York, N.Y.),
C Biswas, and D Sinha, and C Mandal
June 2012, Zhongguo xue xi chong bing fang zhi za zhi = Chinese journal of schistosomiasis control,
C Biswas, and D Sinha, and C Mandal
January 2017, Anais da Academia Brasileira de Ciencias,
Copied contents to your clipboard!