Hypertonicity stimulates Cl(-) transport in the intestine of fresh water acclimated eel, Anguilla anguilla. 2001

M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
Laboratorio di Fisiologia Generale e Ambientale, Dipartimento di Biologia, Università di Lecce, Italy.

Eel intestinal epithelium when bathed symmetrically with normal Ringer solution develops a net Cl(-) current (short circuit current, Isc) giving rise to a negative transepithelial potential (Vt) at the basolateral side of the epithelium, lower in fresh-water (FW)-acclimated animals with respect to sea-water (SW). The aim of the present work was to study the cell response to hypertonic stress of FW eel intestinal epithelium in relation to Cl(-) absorption. The hypertonicity of the external bathing solutions produced first a transient increase of Vt and Isc, then followed (after 10-15 min) by a gradual and sustained increase which reached the maximum value after 40-60 min. The morphometric analysis of the intestine revealed the shrinkage of the cells after 5 min hypertonicity exposure, and then a regulatory volume increase (RVI) response, which parallels the gradual and sustained increase in the electrophysiological parameters. This last phase is inhibited by drugs known to block Cl(-) absorption in eel intestine, such as luminal bumetanide (10 microM), specific inhibitor of Na(+)-K(+)-2Cl(-) cotransport, or basolateral NPPB (0.5 mM), dichloro-DPC (0.5 mM), inhibitors of basolateral Cl(-) conductance. Serosal dimethyl-amiloride (100 microM), specific inhibitor of the Na(+)/H(+) antiport, was ineffective on the hyperosmotic response. Bicarbonate revealed a crucial role as a modulator of hypertonicity response, since in bicarbonate-free conditions or in the presence of serosal 0.25 mM SITS, blocker of HCO(3)(-) transport systems, the Isc response to hypertonicity was lost. In nominally Ca(2+)-free conditions the Isc response to hypertonicity was abolished. The same results were obtained by bilateral addition of 100 microM verapamil or 50 microM nifedipine or 1 mM lanthanum, known Ca(2+) channel blockers, indicating that extracellular Ca(2+) plays a key role for the activation of Cl(-) current in the response to hypertonic stress. The data show that in the eel intestinal epithelium the hypertonicity of the external medium affects cell volume which in turn might represent the signal to increase the rate of Cl(-) transport. This response is sustained by the activation of the luminal Na(+)-K(+)-2Cl(-) cotransporter and the functionality of basolateral Cl(-) channels.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008353 Mannitol A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. (L)-Mannitol,Osmitrol,Osmofundin
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009579 Nitrobenzoates Benzoic acid or benzoic acid esters substituted with one or more nitro groups. Nitrobenzoic Acids,Acids, Nitrobenzoic
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002034 Bumetanide A sulfamyl diuretic. Bumedyl,Bumethanide,Bumex,Burinex,Drenural,Fordiuran,Miccil,PF-1593,PF 1593,PF1593
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion

Related Publications

M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
January 1973, Comptes rendus des seances de la Societe de biologie et de ses filiales,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
January 2002, Symposia of the Society for Experimental Biology,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
June 1967, Nature,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
October 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
September 2008, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
April 2000, Zoological science,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
May 1992, Fish physiology and biochemistry,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
January 1983, The Journal of experimental biology,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
December 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
M G Lionetto, and M E Giordona, and G Nicolardi, and T Schettino
April 1974, The Journal of experimental biology,
Copied contents to your clipboard!