The 5-HT1A receptor in schizophrenia: a promising target for novel atypical neuroleptics? 2001

R A Bantick, and J F Deakin, and P M Grasby
MRC Cyclotron Unit, The Hammersmith Hospital, London, UK. alexander.bantick@ic.ac.uk

Increasing attention is being directed towards the role of the serotonergic system in the neurochemistry of schizophrenia and antipsychotic drug treatment. This review considers the 5-HT1A receptor in this context. In patients with schizophrenia, the majority of post-mortem studies have reported increases in 5-HT1A receptor density in the prefrontal cortex in the approximate range 15-80%. Although the pathophysiological significance of this finding is unclear, given the location of a major proportion of these receptors on pyramidal cells, it may reflect an abnormal glutamatergic network. In terms of drug treatment, 5-HT1A agonists clearly display anticataleptic activity in rats. In addition, 5-HT1A agonists consistently increase dopamine release in the prefrontal cortex in rodents, which is an effect that might be predicted to improve negative symptoms. 5-HT1A agonists augment classical neuroleptics in some rat models of antipsychotic action and may be capable of modulating the glutamatergic network therapeutically. Despite the encouraging preclinical data, there is a paucity of clinical studies of 5-HT1A agonist augmentation of neuroleptics in the treatment of schizophrenia. However, the clinical relevance may be clarified by the atypical antipsychotic drugs clozapine, quetiapine and ziprasidone which combine D2 receptor antagonism and 5-HT1A agonism. In conclusion, given the increased prefrontal 5-HT1A receptor density in the illness, and the anticataleptic activity of 5-HT1A agonists combined with their ability to evoke prefrontal dopamine release, there is now a sufficient rationale to examine thoroughly the role of the 5-HT1A receptor in schizophrenia and antipsychotic drug treatment.

UI MeSH Term Description Entries
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012559 Schizophrenia A severe emotional disorder of psychotic depth characteristically marked by a retreat from reality with delusion formation, HALLUCINATIONS, emotional disharmony, and regressive behavior. Dementia Praecox,Schizophrenic Disorders,Disorder, Schizophrenic,Disorders, Schizophrenic,Schizophrenias,Schizophrenic Disorder
D014150 Antipsychotic Agents Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus. Antipsychotic,Antipsychotic Agent,Antipsychotic Drug,Antipsychotic Medication,Major Tranquilizer,Neuroleptic,Neuroleptic Agent,Neuroleptic Drug,Neuroleptics,Tranquilizing Agents, Major,Antipsychotic Drugs,Antipsychotic Effect,Antipsychotic Effects,Antipsychotics,Major Tranquilizers,Neuroleptic Agents,Neuroleptic Drugs,Tranquillizing Agents, Major,Agent, Antipsychotic,Agent, Neuroleptic,Drug, Antipsychotic,Drug, Neuroleptic,Effect, Antipsychotic,Major Tranquilizing Agents,Major Tranquillizing Agents,Medication, Antipsychotic,Tranquilizer, Major
D017366 Serotonin Receptor Agonists Endogenous compounds and drugs that bind to and activate SEROTONIN RECEPTORS. Many serotonin receptor agonists are used as ANTIDEPRESSANTS; ANXIOLYTICS; and in the treatment of MIGRAINE DISORDERS. 5-HT Agonists,5-Hydroxytryptamine Agonists,Serotonin Agonists,5-HT Agonist,5-Hydroxytrytamine Agonist,Receptor Agonists, Serotonin,Serotonergic Agonist,Serotonergic Agonists,Serotonin Agonist,Serotonin Receptor Agonist,5 HT Agonist,5 HT Agonists,5 Hydroxytryptamine Agonists,5 Hydroxytrytamine Agonist,Agonist, 5-HT,Agonist, 5-Hydroxytrytamine,Agonist, Serotonergic,Agonist, Serotonin,Agonist, Serotonin Receptor,Agonists, 5-HT,Agonists, 5-Hydroxytryptamine,Agonists, Serotonergic,Agonists, Serotonin,Agonists, Serotonin Receptor,Receptor Agonist, Serotonin
D044263 Receptors, Serotonin, 5-HT1 A subclass of G-protein coupled SEROTONIN receptors that couple preferentially to GI-GO G-PROTEINS resulting in decreased intracellular CYCLIC AMP levels. Serotonin 5-HT1 Receptor,Serotonin Receptors, 5-HT1,5-HT1 Receptor,5-HT1 Receptors,Serotonin 5-HT1 Receptors,Serotonin, 5-HT1 Receptors,5 HT1 Receptor,5 HT1 Receptors,5-HT1 Receptor, Serotonin,5-HT1 Receptors Serotonin,5-HT1 Receptors, Serotonin,5-HT1 Serotonin Receptors,Receptor, 5-HT1,Receptor, Serotonin 5-HT1,Receptors Serotonin, 5-HT1,Receptors, 5-HT1,Receptors, 5-HT1 Serotonin,Receptors, Serotonin 5-HT1,Serotonin 5 HT1 Receptor,Serotonin 5 HT1 Receptors,Serotonin Receptors, 5 HT1,Serotonin, 5 HT1 Receptors

Related Publications

R A Bantick, and J F Deakin, and P M Grasby
January 1998, Nursing times,
R A Bantick, and J F Deakin, and P M Grasby
July 2021, Progress in neuro-psychopharmacology & biological psychiatry,
R A Bantick, and J F Deakin, and P M Grasby
March 2004, Biological psychiatry,
R A Bantick, and J F Deakin, and P M Grasby
January 2008, Current topics in medicinal chemistry,
R A Bantick, and J F Deakin, and P M Grasby
January 1998, Fortschritte der Medizin,
R A Bantick, and J F Deakin, and P M Grasby
July 2023, CNS drugs,
R A Bantick, and J F Deakin, and P M Grasby
February 2003, Medizinische Monatsschrift fur Pharmazeuten,
R A Bantick, and J F Deakin, and P M Grasby
March 1990, Trends in pharmacological sciences,
R A Bantick, and J F Deakin, and P M Grasby
September 2001, Current medicinal chemistry,
R A Bantick, and J F Deakin, and P M Grasby
August 2016, Acta biochimica et biophysica Sinica,
Copied contents to your clipboard!