Structural organization and regulation of the small proline-rich family of cornified envelope precursors suggest a role in adaptive barrier function. 2001

A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
Department of Molecular Genetics, Leiden Institute of Chemistry, P. O. Box 9502, 2300 RA Leiden, The Netherlands.

The protective barrier provided by stratified squamous epithelia relies on the cornified cell envelope (CE), a structure synthesized at late stages of keratinocyte differentiation. It is composed of structural proteins, including involucrin, loricrin, and the small proline-rich (SPRR) proteins, all encoded by genes localized at human chromosome 1q21. The genetic characterization of the SPRR locus reveals that the various members of this multigene family can be classified into two distinct groups with separate evolutionary histories. Whereas group 1 genes have diverged in protein structure and are composed of three different classes (SPRR1 (2x), SPRR3, and SPRR4), an active process of gene conversion has counteracted diversification of the protein sequences of group 2 genes (SPRR2 class, seven genes). Contrasting with this homogenization process, all individual members of the SPRR gene family show specific in vivo and in vitro expression patterns and react selectively to UV irradiation. Apparently, creation of regulatory rather than structural diversity has been the driving force behind the evolution of the SPRR gene family. Differential regulation of highly homologous genes underlines the importance of SPRR protein dosage in providing optimal barrier function to different epithelia, while allowing adaptation to diverse external insults.

UI MeSH Term Description Entries
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011392 Proline A non-essential amino acid that is synthesized from GLUTAMIC ACID. It is an essential component of COLLAGEN and is important for proper functioning of joints and tendons. L-Proline,L Proline
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011498 Protein Precursors Precursors, Protein
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
September 1998, The Journal of biological chemistry,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
February 1995, The Journal of investigative dermatology,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
June 1995, The Journal of investigative dermatology,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
September 2002, BioEssays : news and reviews in molecular, cellular and developmental biology,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
March 1999, The Journal of biological chemistry,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
June 1996, Journal of cell science,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
January 2021, Clinical, cosmetic and investigational dermatology,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
October 2015, Proteomics. Clinical applications,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
March 1987, The Journal of biological chemistry,
A Cabral, and P Voskamp, and A M Cleton-Jansen, and A South, and D Nizetic, and C Backendorf
September 2012, Experimental dermatology,
Copied contents to your clipboard!