Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. 2001

V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
Department of Pathology, University of Texas Health Science Center, San Antonio, Texas 78229, USA.

ATP depletion results in Bax translocation from cytosol to mitochondria and release of cytochrome c from mitochondria into cytosol in cultured kidney cells. Overexpression of Bcl-2 prevents cytochrome c release, without ameliorating ATP depletion or Bax translocation, with little or no association between Bcl-2 and Bax as demonstrated by immunoprecipitation (Saikumar, P., Dong, Z., Patel, Y., Hall, K., Hopfer, U., Weinberg, J. M., and Venkatachalam, M. A. (1998) Oncogene 17, 3401-3415). Now we show that translocated Bax forms homo-oligomeric structures, stabilized as chemical adducts by bifunctional cross-linkers in ATP-depleted wild type cells, but remains monomeric in Bcl-2-overexpressing cells. The protective effects of Bcl-2 did not require Bcl-2/Bax association, at least to a degree of proximity or affinity that was stable to conditions of immunoprecipitation or adduct formation by eight cross-linkers of diverse spacer lengths and chemical reactivities. On the other hand, nonionic detergents readily induced homodimers and heterodimers of Bax and Bcl-2. Moreover, associations between translocated Bax and the voltage-dependent anion channel protein or the adenine nucleotide translocator protein could not be demonstrated by immunoprecipitation of Bax, or by using bifunctional cross-linkers. Our data suggest that the in vivo actions of Bax are at least in part dependent on the formation of homo-oligomers without requiring associations with other molecules and that Bcl-2 cytoprotection involves mechanisms that prevent Bax oligomerization.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051028 bcl-2-Associated X Protein A member of the Bcl-2 protein family and homologous partner of C-BCL-2 PROTO-ONCOGENE PROTEIN. It regulates the release of CYTOCHROME C and APOPTOSIS INDUCING FACTOR from the MITOCHONDRIA. Several isoforms of BCL2-associated X protein occur due to ALTERNATIVE SPLICING of the mRNA for this protein. Bax Protein,Bax-alpha Protein,Bax-omega Protein,Bax-sigma Protein,Bax Apoptosis Regulator Protein,Bax-beta Protein,Bax-delta Protein,bcl2-Associated X Protein,bcl2-Associated X Protein Isoform alpha,bcl2-Associated X Protein Isoform beta,bcl2-Associated X Protein Isoform delta,bcl2-Associated X Protein Isoform omega,bcl2-Associated X Protein Isoform sigma,Bax alpha Protein,Bax beta Protein,Bax delta Protein,Bax omega Protein,Bax sigma Protein,Protein, bcl-2-Associated X,X Protein, bcl-2-Associated,bcl 2 Associated X Protein,bcl2 Associated X Protein,bcl2 Associated X Protein Isoform alpha,bcl2 Associated X Protein Isoform beta,bcl2 Associated X Protein Isoform delta,bcl2 Associated X Protein Isoform omega,bcl2 Associated X Protein Isoform sigma
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D019253 Proto-Oncogene Proteins c-bcl-2 Membrane proteins encoded by the BCL-2 GENES and serving as potent inhibitors of cell death by APOPTOSIS. The proteins are found on mitochondrial, microsomal, and NUCLEAR MEMBRANE sites within many cell types. Overexpression of bcl-2 proteins, due to a translocation of the gene, is associated with follicular lymphoma. bcl-2 Proto-Oncogene Proteins,c-bcl-2 Proteins,B-Cell Leukemia 2 Family Proteins,BCL2 Family Proteins,BCL2 Proteins,B Cell Leukemia 2 Family Proteins,Family Proteins, BCL2,Proteins, BCL2,Proteins, BCL2 Family,Proto Oncogene Proteins c bcl 2,Proto-Oncogene Proteins, bcl-2,bcl 2 Proto Oncogene Proteins,c bcl 2 Proteins,c-bcl-2, Proto-Oncogene Proteins
D019281 Dimerization The process by which two molecules of the same chemical composition form a condensation product or polymer. Dimerizations

Related Publications

V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
April 2016, Genes & development,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
February 2000, Molecular and cellular biology,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
May 2008, Cell death and differentiation,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
June 2006, The EMBO journal,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
January 2010, Advances in experimental medicine and biology,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
December 2017, Seminars in cell & developmental biology,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
April 2008, Trends in cell biology,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
July 2016, The FEBS journal,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
September 2008, FEBS letters,
V Mikhailov, and M Mikhailova, and D J Pulkrabek, and Z Dong, and M A Venkatachalam, and P Saikumar
December 2000, Cell death and differentiation,
Copied contents to your clipboard!