Contribution of cryofixation and freeze-substitution to analytical microscopy: a study of Tritrichomonas foetus hydrogenosomes. 2001

K Consort Ribeiro, and M Benchimol, and M Farina
Universidade Santa Ursula, Rio de Janeiro, Brazil.

The hydrogenosome, an organelle that produces molecular hydrogen and ATP from the oxidation of pyruvate or malate under anaerobic conditions, presents some characteristics common to mitochondria. It is found in several trichomonad species, protists living in oxygen-poor environments, as well as certain free-living ciliates, rumen ciliates, and some fungi. We performed a comparative microanalytical study (energy dispersive X-ray analysis and electron spectroscopic imaging) of different fixation methods for electron microscopy analyzing hydrogenosomes of the bovine parasite Tritrichomonas foetus. The study included the elemental composition and the mapping of calcium, phosphorus, and oxygen. A preparation of T. foetus cells, based on cryoimmobilization by high-pressure freezing and freeze-substitution, was compared to a second preparation based on chemical fixation followed by dehydration and routine processing. The ultrastructural preservation achieved by the cryotechnique was far superior to the chemical fixation, since it allowed the successful cryoimmobilization of intracellular ion contents. The detection of several cations (Al, Mg, Co, Ca, Fe) by X-ray microanalysis inside the peripheral vesicle of the hydrogenosome was only possible in cryofixed cells. The presence of aluminum and cobalt ion in the hydrogenosomal vesicle was established for the first time. Electron-spectroscopic images of calcium showed that this element, in addition to the vesicle compartment, is present in the hydrogenosome's membrane in varying concentrations, which might reflect changes in the physiology of this organelle.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D004577 Electron Probe Microanalysis Identification and measurement of ELEMENTS and their location based on the fact that X-RAYS emitted by an element excited by an electron beam have a wavelength characteristic of that element and an intensity related to its concentration. It is performed with an electron microscope fitted with an x-ray spectrometer, in scanning or transmission mode. Microscopy, Electron, X-Ray Microanalysis,Spectrometry, X-Ray Emission, Electron Microscopic,Spectrometry, X-Ray Emission, Electron Probe,X-Ray Emission Spectrometry, Electron Microscopic,X-Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis, Electron Microscopic,X-Ray Microanalysis, Electron Probe,Microanalysis, Electron Probe,Spectrometry, X Ray Emission, Electron Microscopic,Spectrometry, X Ray Emission, Electron Probe,X Ray Emission Spectrometry, Electron Microscopic,X Ray Emission Spectrometry, Electron Probe,X-Ray Microanalysis,Electron Probe Microanalyses,Microanalyses, Electron Probe,Microanalysis, X-Ray,Probe Microanalyses, Electron,Probe Microanalysis, Electron,X Ray Microanalysis,X Ray Microanalysis, Electron Microscopic,X Ray Microanalysis, Electron Probe
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015388 Organelles Specific particles of membrane-bound organized living substances present in eukaryotic cells, such as the MITOCHONDRIA; the GOLGI APPARATUS; ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Organelle
D015925 Cryopreservation Preservation of cells, tissues, organs, or embryos by freezing. In histological preparations, cryopreservation or cryofixation is used to maintain the existing form, structure, and chemical composition of all the constituent elements of the specimens. Cryofixation,Cryonic Suspension,Cryonic Suspensions,Suspension, Cryonic
D016835 Tritrichomonas foetus A species of flagellate parasitic EUKARYOTE. It possesses a long undulating membrane that is bordered on its outer margin by a flagellum that becomes free posteriorly. This organism causes infections in cows that could lead to temporary infertility or abortion.
D017110 Freeze Substitution A modification of the freeze-drying method in which the ice within the frozen tissue is replaced by alcohol or other solvent at a very low temperature. Substitution, Freeze

Related Publications

K Consort Ribeiro, and M Benchimol, and M Farina
January 1993, Methods in cell biology,
K Consort Ribeiro, and M Benchimol, and M Farina
July 1986, Molecular and biochemical parasitology,
K Consort Ribeiro, and M Benchimol, and M Farina
July 1988, Journal of submicroscopic cytology and pathology,
K Consort Ribeiro, and M Benchimol, and M Farina
October 1982, The Journal of parasitology,
K Consort Ribeiro, and M Benchimol, and M Farina
September 1997, European journal of cell biology,
K Consort Ribeiro, and M Benchimol, and M Farina
August 1982, The Journal of protozoology,
K Consort Ribeiro, and M Benchimol, and M Farina
June 1988, Experimental parasitology,
K Consort Ribeiro, and M Benchimol, and M Farina
February 1978, The Journal of biological chemistry,
K Consort Ribeiro, and M Benchimol, and M Farina
February 1978, The Journal of biological chemistry,
Copied contents to your clipboard!