Perinatal dietary NaCl level: effect on angiotensin-induced thermal and dipsogenic responses in adult rats. 2001

M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
Department of Pharmacodynamics, University of Florida, Gainesville, FL 32610, USA.

We have shown previously that administration of angiotensin II (Ang II) produces an apparent decrease in thermoregulatory set point. Exposure to high salt diets either perinatally or later in life has been shown to increase pressor responsiveness to administration of Ang II, so in the present studies we examine whether high dietary NaCl would also increase the thermal responsiveness to Ang II. In the first study, we show that exposure to a basal NaCl diet (0.12%) during gestation through 4 weeks postnatally produced very large elevations in plasma renin activity (PRA) and aldosterone concentrations in the offspring. Exposure to high salt diet (3%) did not decrease the levels of these parameters below those fed mid salt diet (1%). In the second study, we show that rats raised through 4 weeks of age on basal diet, but then fed standard chow until adulthood, showed greater changes in tail skin (T(sk)) and colonic (T(c)) temperatures following administration of Ang II (200 microg/kg sc) than either mid- or high-salt-raised groups. In the third study, we confirmed this finding and extended it to show that rats raised on a very high salt diet (6%) also did not differ from the mid-salt group. In both studies, acute water intake measured in a separate test following administration of Ang II did not differ as a function of perinatal salt diet. In a fourth study, the period of exposure to the diets was extended from the perinatal period through adulthood and, surprisingly, there was no longer an enhanced thermal response to Ang II in basal diet rats compared with rats fed the very high salt diet. In the final study, rats raised on a regular diet but exposed only as adults to the test diets showed a nonsignificant trend toward a decreased thermal response in the basal group. Thus, dietary salt level may have opposite effects on Ang II effects on adult thermoregulation, depending on the age at the exposure.

UI MeSH Term Description Entries
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004327 Drinking Behavior Behaviors associated with the ingesting of water and other liquids; includes rhythmic patterns of drinking (time intervals - onset and duration), frequency and satiety. Behavior, Drinking,Behaviors, Drinking,Drinking Behaviors
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D014662 Vasoconstrictor Agents Drugs used to cause constriction of the blood vessels. Vasoactive Agonist,Vasoactive Agonists,Vasoconstrictor,Vasoconstrictor Agent,Vasoconstrictor Drug,Vasopressor Agent,Vasopressor Agents,Vasoconstrictor Drugs,Vasoconstrictors,Agent, Vasoconstrictor,Agent, Vasopressor,Agents, Vasoconstrictor,Agents, Vasopressor,Agonist, Vasoactive,Agonists, Vasoactive,Drug, Vasoconstrictor,Drugs, Vasoconstrictor
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
August 1984, Behavioral neuroscience,
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
February 1974, Acta endocrinologica,
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
May 1982, The American journal of physiology,
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
August 1997, Pharmacology, biochemistry, and behavior,
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
January 1997, Brain research,
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
November 2000, American journal of physiology. Regulatory, integrative and comparative physiology,
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
March 1990, Physiology & behavior,
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
January 1980, Pharmacology, biochemistry, and behavior,
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
February 1992, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M J Katovich, and J D Aerni, and A T Cespedes, and N E Rowland
January 1984, Clinical and experimental hypertension. Part A, Theory and practice,
Copied contents to your clipboard!