Characterization of a 95 kDa high affinity human high density lipoprotein-binding protein. 2001

A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
Center for Biologics Evaluation and Research, Division of Cellular and Gene Therapy, Food and Drug Administration, 8800 Rockville Pike, Bethesda, Maryland 20892, USA. bucharov@cber.fda.gov

A new human 95 kDa high density lipoprotein (HDL)-binding protein (HBP) corresponding to a high affinity HDL-binding site with K(d) = 1.67 microg/mL and a capacity of 13.4 ng/mg was identified in human fetal hepatocytes. The HDL binding with the 95 kDa HBP plateaus at 2.5-5 microg/mL under reducing and nonreducing conditions. The association of HDL(3) with the 95 kDa HBP plateaued in 15-30 min while dissociation was complete in 30 min. HDL(3), apoA-I, and apoA-II were recognized by the 95 kDa HBP while low density lipoproteins (LDL) and tetranitromethane-modified HDL were not. The 95 kDa HBP predominantly resides on the surface of cells since trypsin treatment of HepG2 cells eliminated nearly 70% of HDL binding. All studied human cells and cell lines (HepG2, Caco-2, HeLa, fibroblasts, SKOV-3, PA-I) demonstrated the presence of the 95 kDa protein. Both RT-PCR and Western blotting for HB-2/ALCAM were negative in human fetal hepatocytes while Gp96/GRP94 was clearly differentiated from the 95 kDa HBP by two-dimensional electrophoretic mobility. Moreover, deglycosylation of HepG2 membrane preparations did not affect either HDL binding to the 95 kDa HBP or its size, while in contrast it affected the molecular weights of HB-2/ALCAM and SR-BI/CLA-1. We conclude that the 95 kDa HBP is a new HDL receptor candidate widely expressed in human cells and cell lines.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
June 1985, The Journal of clinical investigation,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
February 1999, FEBS letters,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
June 1998, Journal of cell science,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
June 1995, Metabolism: clinical and experimental,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
June 1992, The Journal of biological chemistry,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
March 1994, Biochemistry,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
September 1982, Biochimica et biophysica acta,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
January 1987, Transactions of the Association of American Physicians,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
November 1992, Archives of biochemistry and biophysics,
A V Bocharov, and T G Vishnyakova, and I N Baranova, and A P Patterson, and T L Eggerman
February 1987, The Journal of biological chemistry,
Copied contents to your clipboard!