Expression of tyrosine hydroxylase in cerebellar Purkinje cells of ataxic mutant mice: its relation to the onset and/or development of ataxia. 2001

K Sawada, and Y Fukui
Department of Anatomy, University of Tokushima School of Medicine, Tokushima, Japan.

This report describes recent studies on tyrosine hydroxylase (TH) expression in Purkinje cells of the cerebellum of ataxic mutant mice. An increased expression of TH in some Purkinje cells has been observed in two allelic groups of mutant mice, tottering and dilute. TH-positive Purkinje cells appeared preceding the onset of ataxia. Northern blot analysis revealed 2.1 kb of TH mRNA in the mutant cerebella, and the size was identical to that of TH transcripts in other brain regions. However, TH in Purkinje cells did not seem to participate in catecholamine biosynthesis. In vitro studies showed that cultured non-catecholaminergic neurons expressed the TH transcripts following Ca2+ influx. Therefore, abnormal TH expression in the mutant Purkinje cells may indicate neuronal dysfunction caused by misregulation of intracellular Ca2+ concentrations.

UI MeSH Term Description Entries
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001259 Ataxia Impairment of the ability to perform smoothly coordinated voluntary movements. This condition may affect the limbs, trunk, eyes, pharynx, larynx, and other structures. Ataxia may result from impaired sensory or motor function. Sensory ataxia may result from posterior column injury or PERIPHERAL NERVE DISEASES. Motor ataxia may be associated with CEREBELLAR DISEASES; CEREBRAL CORTEX diseases; THALAMIC DISEASES; BASAL GANGLIA DISEASES; injury to the RED NUCLEUS; and other conditions. Coordination Impairment,Dyssynergia,Incoordination,Ataxia, Appendicular,Ataxia, Limb,Ataxia, Motor,Ataxia, Sensory,Ataxia, Truncal,Ataxy,Dyscoordination,Lack of Coordination,Tremor, Rubral,Appendicular Ataxia,Appendicular Ataxias,Ataxias,Ataxias, Appendicular,Ataxias, Limb,Ataxias, Motor,Ataxias, Sensory,Ataxias, Truncal,Coordination Impairments,Coordination Lack,Impairment, Coordination,Impairments, Coordination,Incoordinations,Limb Ataxia,Limb Ataxias,Motor Ataxia,Motor Ataxias,Rubral Tremor,Rubral Tremors,Sensory Ataxia,Sensory Ataxias,Tremors, Rubral,Truncal Ataxia,Truncal Ataxias
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

K Sawada, and Y Fukui
October 1992, Brain research. Molecular brain research,
K Sawada, and Y Fukui
December 2000, Brain research. Developmental brain research,
K Sawada, and Y Fukui
February 1993, Neuroscience letters,
K Sawada, and Y Fukui
January 2003, Neurotoxicity research,
K Sawada, and Y Fukui
September 1983, Brain research,
K Sawada, and Y Fukui
November 2008, Molecular and cellular biochemistry,
Copied contents to your clipboard!