Arachidonic acid both inhibits and enhances whole cell calcium currents in rat sympathetic neurons. 2001

L Liu, and C F Barrett, and A R Rittenhouse
Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.

We recently reported that arachidonic acid (AA) inhibits L- and N-type Ca(2+) currents at positive test potentials in the presence of the dihydropyridine L-type Ca(2+) channel agonist (+)-202-791 in dissociated neonatal rat superior cervical ganglion neurons [Liu L and Rittenhouse AR. J Physiol (Lond) 525: 291-404, 2000]. In this first of two companion papers, we characterized the mechanism of inhibition by AA at the whole cell level. In the presence of either omega-conotoxin GVIA or nimodipine, AA decreased current amplitude, confirming that L- and N-type currents, respectively, were inhibited. AA-induced inhibition was concentration dependent and reversible with an albumin-containing wash solution, but appears independent of AA metabolism and G protein activity. In characterizing inhibition, an AA-induced enhancement of current amplitude was revealed that occurred primarily at negative test potentials. Cell dialysis with albumin minimized inhibition but had little effect on enhancement, suggesting that AA has distinct sites of action. We examined AA's actions on current kinetics and found that AA increased holding potential-dependent inactivation. AA also enhanced the rate of N-type current activation. These findings indicate that AA causes multiple changes in sympathetic Ca(2+) currents.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009553 Nimodipine A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure. Admon,Bay e 9736,Brainal,Calnit,Kenesil,Modus,Nimodipin Hexal,Nimodipin-ISIS,Nimodipino Bayvit,Nimotop,Nymalize,Remontal,Bayvit, Nimodipino,Hexal, Nimodipin,Nimodipin ISIS,e 9736, Bay
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006153 Guanosine Diphosphate A guanine nucleotide containing two phosphate groups esterified to the sugar moiety. GDP,Guanosine 5'-Diphosphate,Guanosine 5'-Trihydrogen Diphosphate,5'-Diphosphate, Guanosine,5'-Trihydrogen Diphosphate, Guanosine,Diphosphate, Guanosine,Diphosphate, Guanosine 5'-Trihydrogen,Guanosine 5' Diphosphate,Guanosine 5' Trihydrogen Diphosphate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.

Related Publications

L Liu, and C F Barrett, and A R Rittenhouse
June 2000, The Journal of physiology,
L Liu, and C F Barrett, and A R Rittenhouse
October 1995, Sheng li xue bao : [Acta physiologica Sinica],
L Liu, and C F Barrett, and A R Rittenhouse
January 2022, Frontiers in pharmacology,
L Liu, and C F Barrett, and A R Rittenhouse
October 1993, Neuron,
L Liu, and C F Barrett, and A R Rittenhouse
January 1998, Neuropharmacology,
L Liu, and C F Barrett, and A R Rittenhouse
June 1979, Science (New York, N.Y.),
L Liu, and C F Barrett, and A R Rittenhouse
March 1998, Brain research,
L Liu, and C F Barrett, and A R Rittenhouse
October 1993, Journal of neurophysiology,
L Liu, and C F Barrett, and A R Rittenhouse
November 1987, Proceedings of the Royal Society of London. Series B, Biological sciences,
L Liu, and C F Barrett, and A R Rittenhouse
March 1996, Journal of neurophysiology,
Copied contents to your clipboard!