Long-term correlations in the spike trains of medullary sympathetic neurons. 2001

C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824-1317, USA.

Fano factor analysis was used to characterize the spike trains of single medullary neurons with sympathetic nerve-related activity in cats that were decerebrate or anesthetized with Dial-urethan or urethan. For this purpose, values (Fano factor) of the variance of the number of extracellularly recorded spikes divided by the mean number of spikes were calculated for window sizes of systematically varied length. For window sizes < or =10 ms, the Fano factor was close to one, as expected for a Bernoulli process with a low probability of success. The Fano factor dipped below one as the window size approached the shortest interspike interval (ISI) and reached its nadir at window sizes near the modal ISI. The extent of the dip reflected the shape (skewness) of the ISI histogram with the dip being smallest for the most asymmetric distributions. Most importantly, for a wide range of window sizes exceeding the modal ISI, the Fano factor curve took the form of a power law function. This was the case independent of the component (cardiac related, 10 Hz, or 2--6 Hz) of inferior cardiac sympathetic nerve discharge to which unit activity was correlated or the medullary region (lateral tegmental field, raphe, caudal and rostral ventrolateral medulla) in which the neuron was located. The power law relationship in the Fano factor curves was eliminated by randomly shuffling the ISIs even though the distribution of the intervals was unchanged. Thus the power law relationship arose from long-term correlations among ISIs that were disrupted by shuffling the data. The presence of long-term correlations across different time scales reflects the property of statistical self-similarity that is characteristic of fractal processes. In most cases, we found that mean ISI and variance for individual spike trains increased as a function of the number of intervals counted. This can be attributed to the clustering of long and short ISIs, which also is an inherent property of fractal time series. We conclude that the spike trains of brain stem sympathetic neurons have fractal properties.

UI MeSH Term Description Entries
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013564 Sympathetic Nervous System The thoracolumbar division of the autonomic nervous system. Sympathetic preganglionic fibers originate in neurons of the intermediolateral column of the spinal cord and project to the paravertebral and prevertebral ganglia, which in turn project to target organs. The sympathetic nervous system mediates the body's response to stressful situations, i.e., the fight or flight reactions. It often acts reciprocally to the parasympathetic system. Nervous System, Sympathetic,Nervous Systems, Sympathetic,Sympathetic Nervous Systems,System, Sympathetic Nervous,Systems, Sympathetic Nervous
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017709 Fractals Patterns (real or mathematical) which look similar at different scales, for example the network of airways in the lung which shows similar branching patterns at progressively higher magnifications. Natural fractals are self-similar across a finite range of scales while mathematical fractals are the same across an infinite range. Many natural, including biological, structures are fractal (or fractal-like). Fractals are related to "chaos" (see NONLINEAR DYNAMICS) in that chaotic processes can produce fractal structures in nature, and appropriate representations of chaotic processes usually reveal self-similarity over time. Fractal

Related Publications

C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
June 1975, Experimental neurology,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
January 1975, Brain research,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
January 1988, Biological cybernetics,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
June 2003, Proceedings of the National Academy of Sciences of the United States of America,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
April 2003, Journal of neurophysiology,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
April 2009, Journal of neuroscience methods,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
July 2007, Neural computation,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
April 1983, IEEE transactions on bio-medical engineering,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
January 1979, Methods in enzymology,
C D Lewis, and G L Gebber, and P D Larsen, and S M Barman
June 2012, Journal of neuroscience methods,
Copied contents to your clipboard!