Isolation and characterization of WHI3, a size-control gene of Saccharomyces cerevisiae. 2001

R S Nash, and T Volpe, and B Futcher
Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, New York 11794-5222.

WHI3 is a gene affecting size control and cell cycle in the yeast Saccharomyces cerevisiae. The whi3 mutant has small cells, while extra doses of WHI3 produce large cells, and a large excess of WHI3 produces a lethal arrest in G1 phase. WHI3 seems to be a dose-dependent inhibitor of Start. Whi3 and its partially redundant homolog Whi4 have an RNA-binding domain, and mutagenesis experiments indicate that this RNA-binding domain is essential for Whi3 function. CLN3-1 whi3 cells are extremely small, nearly sterile, and largely nonresponsive to mating factor. Fertility is restored by deletion of CLN2, suggesting that whi3 cells may have abnormally high levels of CLN2 function.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein

Related Publications

R S Nash, and T Volpe, and B Futcher
January 1989, Journal of cell science. Supplement,
R S Nash, and T Volpe, and B Futcher
January 1994, Molecular and cellular biology,
R S Nash, and T Volpe, and B Futcher
February 1984, Molecular and cellular biology,
R S Nash, and T Volpe, and B Futcher
October 1984, Gene,
R S Nash, and T Volpe, and B Futcher
September 1989, Molecular and cellular biology,
R S Nash, and T Volpe, and B Futcher
August 1993, The Journal of biological chemistry,
R S Nash, and T Volpe, and B Futcher
August 1997, The Journal of biological chemistry,
R S Nash, and T Volpe, and B Futcher
August 1996, The Journal of biological chemistry,
R S Nash, and T Volpe, and B Futcher
December 1989, Molecular and cellular biology,
Copied contents to your clipboard!