Catechol estrogens induce oxidative DNA damage and estradiol enhances cell proliferation. 2001

Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
Department of Hygiene, Mie University School of Medicine, Mie, Japan.

Estrogen-induced carcinogenesis involves enhanced cell proliferation (promotion) and genotoxic effects (initiation). To investigate the contribution of estrogens and their metabolites to tumor initiation, we examined DNA damage induced by estradiol and its metabolites, the catechol estrogens 2-hydroxyestradiol (2-OHE(2)) and 4-hydroxyestradiol (4-OHE(2)). In the presence of Cu(II), catechol estrogens formed piperidine-labile sites at thymine and cytosine residues in (32)P 5'-end-labeled DNA fragments and induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine. NADH markedly enhanced Cu(II)-dependent DNA damage mediated by nanomolar concentrations of catechol estrogens. Catalase and bathocuproine inhibited the DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). These results suggest that H(2)O(2), generated during Cu(II)-catalyzed autoxidation of catechol estrogens, reacts with Cu(I) to form the Cu(I)-peroxide complex, leading to oxidative DNA damage, and that NADH enhanced DNA damage through the formation of redox cycle. To investigate the role of estrogens and their metabolites in tumor promotion, we examined their effects on proliferation of estrogen-dependent MCF-7 cells. Estradiol enhanced the proliferation of MCF-7 cells at much lower concentrations than catechol estrogens. These findings indicate that catechol estrogens play a role in tumor initiation through oxidative DNA damage, whereas estrogens themselves induce tumor promotion and/or progression by enhancing cell proliferation in estrogen-induced carcinogenesis.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010618 Phenanthrolines Phenanthroline
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D002393 Estrogens, Catechol 2- or 4-Hydroxyestrogens. Substances that are physiologically active in mammals, especially in the control of gonadotropin secretion. Physiological activity can be ascribed to either an estrogenic action or interaction with the catecholaminergic system. Catechol Estrogens,Catecholestrogens
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003300 Copper A heavy metal trace element with the atomic symbol Cu, atomic number 29, and atomic weight 63.55. Copper-63,Copper 63
D003849 Deoxyguanosine A nucleoside consisting of the base guanine and the sugar deoxyribose.
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug

Related Publications

Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
October 2017, Hepatobiliary & pancreatic diseases international : HBPD INT,
Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
March 1999, Chemical research in toxicology,
Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
July 2013, Toxicology letters,
Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
September 2008, Toxicological sciences : an official journal of the Society of Toxicology,
Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
September 2001, Carcinogenesis,
Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
January 2000, Mutation research,
Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
October 2013, Chemical research in toxicology,
Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
August 2022, International journal of molecular sciences,
Y Hiraku, and N Yamashita, and M Nishiguchi, and S Kawanishi
August 2001, Carcinogenesis,
Copied contents to your clipboard!