Ontogeny of hepatic enzymes involved in serine- and folate-dependent one-carbon metabolism in rabbits. 2001

H R Thompson, and G M Jones, and M R Narkewicz
Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Colorado School of Medicine, Denver, CO 80218, USA.

Serine occupies a central position in folate-dependent, one-carbon metabolism through 5,10-methylenetetrahydrofolate (MTHF) and 5-formyltetrahydrofolate (FTHF). We characterized the ontogeny of the specific activity of key enzymes involved in serine, 5,10-MTHF, and 5-FTHF metabolism: methenyltetrahydrofolate synthetase (MTHFS), MTHF reductase (MTHFR), the glycine cleavage system (GCS), methionine synthase (MS), and serine hydroxymethyltransferase (SHMT) in rabbit liver, placenta, brain, and kidney. In liver, MTHFS activity is low in the fetus (0.36 +/- 0.07 nmol. min(-1). mg protein(-1)), peaks at 3 wk (1.48 +/- 0.50 nmol. min(-1). mg protein(-1)), and then decreases to adult levels (1.13 +/- 0.32 nmol. min(-1). mg protein(-1)). MTHFR activity is highest early in gestation (24.9 +/- 2.4 nmol. h(-1). mg protein(-1)) and declines rapidly by birth (4.7 +/- 1.3 nmol. h(-1). mg protein(-1)). MS is highest during fetal life and declines after birth. Cytosolic SHMT activity does not vary during development, but mitochondrial SHMT peaks at 23 days. GCS activity is high in the fetus and the neonate, declining after weaning. In placenta and brain, all activities are low throughout gestation. Cytosolic and mitochondrial SHMT activities are low in kidney and rise after weaning, whereas MTHFS is low throughout development. These data suggest that the liver is the primary site of activity for these enzymes. Throughout development, there are multiple potential sources for production of 5,10-MTHF, but early in gestation high MTHFR activity and low MTHFS activity could reduce 5,10-MTHF availability.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002955 Leucovorin The active metabolite of FOLIC ACID. Leucovorin is used principally as an antidote to FOLIC ACID ANTAGONISTS. Calcium Leucovorin,Citrovorum Factor,Folinic Acid,N(5)-Formyltetrahydrofolate,5-Formyltetrahydrofolate,5-Formyltetrahydropteroylglutamate,Calcium Folinate,Folinic Acid-SF,Leucovorin, (D)-Isomer,Leucovorin, (DL)-Isomer,Leucovorin, (R)-Isomer,Leucovorin, Calcium (1:1) Salt,Leucovorin, Calcium (1:1) Salt, (DL)-Isomer,Leucovorin, Calcium (1:1) Salt, Pentahydrate,Leucovorin, Monosodium Salt,Leukovorin,Leukovorum,Wellcovorin,5 Formyltetrahydrofolate,5 Formyltetrahydropteroylglutamate,Acid, Folinic,Factor, Citrovorum,Folinate, Calcium,Folinic Acid SF,Leucovorin, Calcium,Monosodium Salt Leucovorin
D005260 Female Females

Related Publications

H R Thompson, and G M Jones, and M R Narkewicz
December 2004, Journal of radiation research,
H R Thompson, and G M Jones, and M R Narkewicz
September 1990, Research communications in chemical pathology and pharmacology,
H R Thompson, and G M Jones, and M R Narkewicz
April 1993, The Biochemical journal,
H R Thompson, and G M Jones, and M R Narkewicz
January 2008, Vitamins and hormones,
H R Thompson, and G M Jones, and M R Narkewicz
May 1989, Archives of biochemistry and biophysics,
H R Thompson, and G M Jones, and M R Narkewicz
January 1982, Biochemistry,
H R Thompson, and G M Jones, and M R Narkewicz
August 1996, Carcinogenesis,
H R Thompson, and G M Jones, and M R Narkewicz
October 2016, Nature reviews. Cancer,
H R Thompson, and G M Jones, and M R Narkewicz
March 2011, Birth defects research. Part A, Clinical and molecular teratology,
H R Thompson, and G M Jones, and M R Narkewicz
November 2023, Biology direct,
Copied contents to your clipboard!