Left ventricular performance during prolonged exercise: absence of systolic dysfunction. 2001

J M Goodman, and P R McLaughlin, and P P Liu
Faculty of Physical Education and Health, University of Toronto, 55 Harbord Street, Toronto, Ontario, Canada M5S 2W6. jack.goodman@utoronto.ca

We assessed left ventricular systolic and diastolic performance during and after prolonged exercise under controlled conditions in a group of healthy, trained men. Previous studies have examined the effects of prolonged effort on left ventricular function, yet it remains unclear whether or not left ventricular dysfunction (e.g. cardiac fatigue) can be produced under such conditions. We studied 15 healthy men, aged 27+/-1 years (mean+/-S.E.M.). Subjects exercised on bicycles at a constant work rate (60% of maximum oxygen uptake per min) for 150 min. Measurements of gas exchange, blood pressure and haematocrit were obtained, concurrent with the assessment of left ventricular function using equilibrium radionuclide angiography, at rest, during exercise (every 30 min) and after 30 min of recovery. Fluid replacement was provided and monitored during the exercise period. The baseline resting and exercise ejection fractions were 66+/-2% and 78+/-2% respectively. During exercise, subjects consumed 1816+/-136 ml of fluid, and the haematocrit had increased at 120 min of exercise (from 47.2%+/-0.6 to 49.9+/-0.8%; P<0.05). There was no change in either systolic or diastolic blood pressure throughout the exercise period, but heart rate drifted upwards from 141+/-2 beats/min after 30 min to 154+/-3 beats/min after 150 min (P<0.05). There was a small decline (8%; P<0.05) in end-diastolic volume at 150 min. No changes were observed in left ventricular ejection fraction, the pressure/volume ratio or end-systolic volume. After 30 min of sitting in recovery, heart rate was still higher than the pre-exercise value (84+/-3 compared with 69+/-2 beats/min; P<0.05), as were measures of peak filling rate and time to peak filling (P<0.05). The ejection fraction in the post-exercise recovery period was similar to the pre-exercise value. The results indicate that prolonged exercise of moderate duration may not induce abnormal left ventricular systolic function or cardiac fatigue during exercise.

UI MeSH Term Description Entries
D008297 Male Males
D011659 Pulmonary Gas Exchange The exchange of OXYGEN and CARBON DIOXIDE between alveolar air and pulmonary capillary blood that occurs across the BLOOD-AIR BARRIER. Exchange, Pulmonary Gas,Gas Exchange, Pulmonary
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D003971 Diastole Post-systolic relaxation of the HEART, especially the HEART VENTRICLES. Diastoles
D005440 Fluid Therapy Therapy whose basic objective is to restore the volume and composition of the body fluids to normal with respect to WATER-ELECTROLYTE BALANCE. Fluids may be administered intravenously, orally, by intermittent gavage, or by HYPODERMOCLYSIS. Oral Rehydration Therapy,Rehydration,Rehydration, Oral,Oral Rehydration,Rehydration Therapy, Oral,Therapy, Fluid,Therapy, Oral Rehydration,Fluid Therapies,Oral Rehydration Therapies,Oral Rehydrations,Rehydration Therapies, Oral,Rehydrations,Rehydrations, Oral,Therapies, Fluid,Therapies, Oral Rehydration
D006400 Hematocrit The volume of packed RED BLOOD CELLS in a blood specimen. The volume is measured by centrifugation in a tube with graduated markings, or with automated blood cell counters. It is an indicator of erythrocyte status in disease. For example, ANEMIA shows a low value; POLYCYTHEMIA, a high value. Erythrocyte Volume, Packed,Packed Red-Cell Volume,Erythrocyte Volumes, Packed,Hematocrits,Packed Erythrocyte Volume,Packed Erythrocyte Volumes,Packed Red Cell Volume,Packed Red-Cell Volumes,Red-Cell Volume, Packed,Red-Cell Volumes, Packed,Volume, Packed Erythrocyte,Volume, Packed Red-Cell,Volumes, Packed Erythrocyte,Volumes, Packed Red-Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013318 Stroke Volume The amount of BLOOD pumped out of the HEART per beat, not to be confused with cardiac output (volume/time). It is calculated as the difference between the end-diastolic volume and the end-systolic volume. Ventricular Ejection Fraction,Ventricular End-Diastolic Volume,Ventricular End-Systolic Volume,Ejection Fraction, Ventricular,Ejection Fractions, Ventricular,End-Diastolic Volume, Ventricular,End-Diastolic Volumes, Ventricular,End-Systolic Volume, Ventricular,End-Systolic Volumes, Ventricular,Fraction, Ventricular Ejection,Fractions, Ventricular Ejection,Stroke Volumes,Ventricular Ejection Fractions,Ventricular End Diastolic Volume,Ventricular End Systolic Volume,Ventricular End-Diastolic Volumes,Ventricular End-Systolic Volumes,Volume, Stroke,Volume, Ventricular End-Diastolic,Volume, Ventricular End-Systolic,Volumes, Stroke,Volumes, Ventricular End-Diastolic,Volumes, Ventricular End-Systolic
D013599 Systole Period of contraction of the HEART, especially of the HEART VENTRICLES. Systolic Time Interval,Interval, Systolic Time,Intervals, Systolic Time,Systoles,Systolic Time Intervals,Time Interval, Systolic,Time Intervals, Systolic

Related Publications

J M Goodman, and P R McLaughlin, and P P Liu
April 2003, Dynamic medicine : DM,
J M Goodman, and P R McLaughlin, and P P Liu
September 2008, American heart journal,
J M Goodman, and P R McLaughlin, and P P Liu
September 1986, Journal of cardiography,
J M Goodman, and P R McLaughlin, and P P Liu
October 1995, Chest,
J M Goodman, and P R McLaughlin, and P P Liu
March 2023, Thrombosis research,
J M Goodman, and P R McLaughlin, and P P Liu
March 1991, Journal of applied physiology (Bethesda, Md. : 1985),
J M Goodman, and P R McLaughlin, and P P Liu
September 1983, The American journal of medicine,
J M Goodman, and P R McLaughlin, and P P Liu
January 1994, European journal of applied physiology and occupational physiology,
J M Goodman, and P R McLaughlin, and P P Liu
September 2000, Journal of the American College of Cardiology,
Copied contents to your clipboard!