Cell cycle expression of histone genes in Trypanosoma cruzi. 2001

R F Recinos, and L V Kirchhoff, and J E Donelson
Department of Biochemistry, University of Iowa, 4-403 Bowen Science Research Building, Iowa City, IA 52242, USA.

In yeast and mammalian cells, the cell cycle-dependent histone genes are typically expressed at a 15- to 35-fold higher level during S phase than during other phases of the cell cycle due to increases in both their transcription rates (three- to 17-fold) and the stabilities of their mRNAs (three to fivefold). In the protozoan trypanosomatids, most life cycle stage-specific genes are not regulated by changes in transcription rates, but are controlled entirely by post-transcriptional events. In contrast, little is known about cell cycle-dependent regulation of trypanosomatid genes. To examine cell cycle-associated expression of histone genes in a trypanosomatid, Trypanosoma cruzi epimastigotes were synchronized with hydroxyurea. The steady state levels of histone mRNAs in the G1, S and G2 phases of the cell cycle were found to vary only two- to fourfold, peaking in S phase. Nuclear run on assays showed that the histone genes are transcribed by RNA polymerase II and that their transcription rates do not increase in S phase relative to G1 and G2. Thus, during S phase of T. cruzi the increase in histone mRNA stability is about the same as in mammals and yeast, but no corresponding increase in the transcription rates of the histone genes occurs.

UI MeSH Term Description Entries
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D006918 Hydroxyurea An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase. Hydroxycarbamid,Hydrea,Oncocarbide
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012323 RNA Processing, Post-Transcriptional Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein. Post-Transcriptional RNA Modification,RNA Processing,Post-Transcriptional RNA Processing,Posttranscriptional RNA Processing,RNA Processing, Post Transcriptional,RNA Processing, Posttranscriptional,Modification, Post-Transcriptional RNA,Modifications, Post-Transcriptional RNA,Post Transcriptional RNA Modification,Post Transcriptional RNA Processing,Post-Transcriptional RNA Modifications,Processing, Posttranscriptional RNA,Processing, RNA,RNA Modification, Post-Transcriptional,RNA Modifications, Post-Transcriptional
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014349 Trypanosoma cruzi The agent of South American trypanosomiasis or CHAGAS DISEASE. Its vertebrate hosts are man and various domestic and wild animals. Insects of several species are vectors. Trypanosoma cruzus,cruzi, Trypanosoma
D017125 Genes, Protozoan The functional hereditary units of protozoa. Protozoan Genes,Gene, Protozoan,Protozoan Gene

Related Publications

R F Recinos, and L V Kirchhoff, and J E Donelson
January 2001, Journal of cellular biochemistry,
R F Recinos, and L V Kirchhoff, and J E Donelson
July 1994, Molecular and biochemical parasitology,
R F Recinos, and L V Kirchhoff, and J E Donelson
November 1997, Experimental cell research,
R F Recinos, and L V Kirchhoff, and J E Donelson
July 2020, Biochimica et biophysica acta. Molecular cell research,
R F Recinos, and L V Kirchhoff, and J E Donelson
October 2000, Molecular and biochemical parasitology,
R F Recinos, and L V Kirchhoff, and J E Donelson
April 2007, Protist,
R F Recinos, and L V Kirchhoff, and J E Donelson
August 2023, Parasitology research,
R F Recinos, and L V Kirchhoff, and J E Donelson
January 1971, Revista do Instituto de Medicina Tropical de Sao Paulo,
R F Recinos, and L V Kirchhoff, and J E Donelson
May 1957, Prensa medica argentina,
Copied contents to your clipboard!