An image reconstruction algorithm for three-dimensional electrical impedance tomography. 2001

A Le Hyaric, and M K Pidcock
School of Computing and Mathematical Sciences, Oxford Brookes University, Heading, UK.

Electrical impedance tomography (EIT) has been studied by many authors and in most of this work it has been considered to be a two-dimensional problem. Many groups are now turning their attention to the full three-dimensional case in which the computational demands become much greater. It is interesting to look for ways to reduce this demand and in this paper we describe an implementation of an algorithm that is able to achieve this by precomputing many of the quantities needed in the image reconstruction. The algorithm is based on a method called NOSER introduced some years ago by Cheney et al. [3]. In this paper we have significantly extended the method by introducing a more realistic electrode model into the analysis. We have given explicit formulae for the quantities involved so that the reader can reproduce our results.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D014054 Tomography Imaging methods that result in sharp images of objects located on a chosen plane and blurred images located above or below the plane. Tomographies
D017097 Electric Impedance The resistance to the flow of either alternating or direct electrical current. Bioelectrical Impedance,Electric Resistance,Impedance,Ohmic Resistance,Biolectric Impedance,Electrical Impedance,Electrical Resistance,Impedance, Bioelectrical,Impedance, Biolectric,Impedance, Electric,Impedance, Electrical,Ohmic Resistances,Resistance, Electric,Resistance, Electrical,Resistance, Ohmic,Resistances, Ohmic
D017711 Nonlinear Dynamics The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos. Chaos Theory,Models, Nonlinear,Non-linear Dynamics,Non-linear Models,Chaos Theories,Dynamics, Non-linear,Dynamics, Nonlinear,Model, Non-linear,Model, Nonlinear,Models, Non-linear,Non linear Dynamics,Non linear Models,Non-linear Dynamic,Non-linear Model,Nonlinear Dynamic,Nonlinear Model,Nonlinear Models,Theories, Chaos,Theory, Chaos

Related Publications

A Le Hyaric, and M K Pidcock
November 1996, Physiological measurement,
A Le Hyaric, and M K Pidcock
November 1996, Physiological measurement,
A Le Hyaric, and M K Pidcock
May 1994, Physiological measurement,
A Le Hyaric, and M K Pidcock
January 1988, Clinical physics and physiological measurement : an official journal of the Hospital Physicists' Association, Deutsche Gesellschaft fur Medizinische Physik and the European Federation of Organisations for Medical Physics,
A Le Hyaric, and M K Pidcock
March 2003, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi,
A Le Hyaric, and M K Pidcock
December 2014, IEEE transactions on medical imaging,
A Le Hyaric, and M K Pidcock
April 1996, Nature,
A Le Hyaric, and M K Pidcock
August 2010, Physiological measurement,
A Le Hyaric, and M K Pidcock
June 2002, IEEE transactions on medical imaging,
A Le Hyaric, and M K Pidcock
April 2024, Physiological measurement,
Copied contents to your clipboard!