Theoretical bounds on the estimation of transverse displacement, transverse strain and Poisson's ratio in elastography. 2000

E E Konofagou, and T Varghese, and J Ophir
Department of Radiology, University of Texas Medical School, Houston 77030, USA. elisak@bwh.harvard.edu

The Cramér-Rao Lower Bounds (CRLB) are derived for the displacement and strain estimation in directions orthogonal to the ultrasonic beam axis, using a previously-described recorrelation method of axial, lateral and elevational motion estimation. We also compare it to the lateral tracking method that involves the sole use of the axial signal in the transverse direction. Our theoretical results, verified with simulations and phantom experiments, show that elastography is capable of measuring axial and transverse strain at up to 10% axially applied compression. Finally, we predict the performance of the estimation of the Poisson's ratio using decoupled axial and lateral estimates that result from the recorrelation method.

UI MeSH Term Description Entries
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D004548 Elasticity Resistance and recovery from distortion of shape.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D014463 Ultrasonography The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz. Echography,Echotomography,Echotomography, Computer,Sonography, Medical,Tomography, Ultrasonic,Ultrasonic Diagnosis,Ultrasonic Imaging,Ultrasonographic Imaging,Computer Echotomography,Diagnosis, Ultrasonic,Diagnostic Ultrasound,Ultrasonic Tomography,Ultrasound Imaging,Diagnoses, Ultrasonic,Diagnostic Ultrasounds,Imaging, Ultrasonic,Imaging, Ultrasonographic,Imaging, Ultrasound,Imagings, Ultrasonographic,Imagings, Ultrasound,Medical Sonography,Ultrasonic Diagnoses,Ultrasonographic Imagings,Ultrasound, Diagnostic,Ultrasounds, Diagnostic
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D016012 Poisson Distribution A distribution function used to describe the occurrence of rare events or to describe the sampling distribution of isolated counts in a continuum of time or space. Distribution, Poisson
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

E E Konofagou, and T Varghese, and J Ophir
December 2004, IEEE transactions on medical imaging,
E E Konofagou, and T Varghese, and J Ophir
November 2015, Physics in medicine and biology,
E E Konofagou, and T Varghese, and J Ophir
March 2007, Physics in medicine and biology,
E E Konofagou, and T Varghese, and J Ophir
March 2007, Physics in medicine and biology,
E E Konofagou, and T Varghese, and J Ophir
February 2004, Ultrasound in medicine & biology,
E E Konofagou, and T Varghese, and J Ophir
August 2009, Ultrasound in medicine & biology,
E E Konofagou, and T Varghese, and J Ophir
February 1997, The Journal of the Acoustical Society of America,
E E Konofagou, and T Varghese, and J Ophir
July 2020, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Copied contents to your clipboard!