Determination of elastic properties of metal alloys and dental porcelains. 2001

N Suansuwan, and M V Swain
Biomaterials Science Research Unit, Faculty of Dentistry, The University of Sydney, Australia.

This study aimed to determine Young's modulus, shear modulus and Poisson's ratio of some metal alloys and dental porcelains used in fixed prosthodontics using the technique of impulse excitation of vibration. It also aimed to compare Young's modulus values of these materials with those obtained using the other two methods: the four-point flexural test and the indentation test using the ultra micro-indentation system (UMIS). Five types of metal alloys and four types of dental porcelains were tested. The samples were prepared to a rectangular shape of approximately 8 x 30 x 1.5 mm. Frequency of vibration in a sample was read when a singular elastic strike was made with an impulse tool. The elastic constants were calculated from the frequency of vibration, dimension and mass of each sample. Young's modulus values resulting from the impulse excitation of vibration are not significantly different (P<0.05) from those obtained using the flexural test and the UMIS test in most metal alloys but are different in titanium, titanium alloy and most of the dental porcelains. The technique of impulse excitation of vibration has proven to be an accurate method and is simple to operate. The elastic properties of these alloys and porcelains are essential for determining the other mechanical properties (fracture toughness) and are relevant in clinical application.

UI MeSH Term Description Entries
D008422 Materials Testing The testing of materials and devices, especially those used for PROSTHESES AND IMPLANTS; SUTURES; TISSUE ADHESIVES; etc., for hardness, strength, durability, safety, efficacy, and biocompatibility. Biocompatibility Testing,Biocompatible Materials Testing,Hemocompatibility Testing,Testing, Biocompatible Materials,Testing, Hemocompatible Materials,Hemocompatibility Testings,Hemocompatible Materials Testing,Materials Testing, Biocompatible,Materials Testing, Hemocompatible,Testing, Biocompatibility,Testing, Hemocompatibility,Testing, Materials,Testings, Biocompatibility
D010165 Palladium A chemical element having an atomic weight of 106.4, atomic number of 46, and the symbol Pd. It is a white, ductile metal resembling platinum, and following it in abundance and importance of applications. It is used in dentistry in the form of gold, silver, and copper alloys.
D002516 Ceramics Products made by baking or firing nonmetallic minerals (clay and similar materials). In making dental restorations or parts of restorations the material is fused porcelain. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed & Boucher's Clinical Dental Terminology, 4th ed) Ceramic
D002858 Chromium Alloys Specific alloys not less than 85% chromium and nickel or cobalt, with traces of either nickel or cobalt, molybdenum, and other substances. They are used in partial dentures, orthopedic implants, etc. Chromium-Cobalt Alloys,Chromium-Nickel Alloys,Cobalt-Chromium Alloys,Nickel-Chromium Alloys,Alloys, Chromium,Alloys, Chromium-Cobalt,Alloys, Chromium-Nickel,Alloys, Cobalt-Chromium,Alloys, Nickel-Chromium,Chromium Cobalt Alloys,Chromium Nickel Alloys,Cobalt Chromium Alloys,Nickel Chromium Alloys
D003722 Dental Alloys A mixture of metallic elements or compounds with other metallic or metalloid elements in varying proportions for use in restorative or prosthetic dentistry. Alloy, Dental,Alloys, Dental,Dental Alloy
D003776 Dental Porcelain A type of porcelain used in dental restorations, either jacket crowns or inlays, artificial teeth, or metal-ceramic crowns. It is essentially a mixture of particles of feldspar and quartz, the feldspar melting first and providing a glass matrix for the quartz. Dental porcelain is produced by mixing ceramic powder (a mixture of quartz, kaolin, pigments, opacifiers, a suitable flux, and other substances) with distilled water. (From Jablonski's Dictionary of Dentistry, 1992) Porcelain,Porcelain, Dental,Dental Porcelains,Porcelains,Porcelains, Dental
D003779 Denture Design The plan, delineation, and location of actual structural elements of dentures. The design can relate to retainers, stress-breakers, occlusal rests, flanges, framework, lingual or palatal bars, reciprocal arms, etc. Denture Designs,Design, Denture,Designs, Denture
D004548 Elasticity Resistance and recovery from distortion of shape.
D006047 Gold Alloys Alloys that contain a high percentage of gold. They are used in restorative or prosthetic dentistry. Gold Alloy,Alloy, Gold,Alloys, Gold
D006244 Hardness The mechanical property of material that determines its resistance to force. HARDNESS TESTS measure this property. Hardnesses

Related Publications

N Suansuwan, and M V Swain
July 1980, Journal of biomedical materials research,
N Suansuwan, and M V Swain
January 1990, Ankara Universitesi Dis Hekimligi Fakultesi dergisi = The Journal of the Dental Faculty of Ankara University,
N Suansuwan, and M V Swain
August 1979, Zahntechnik; Zeitschrift fur Theorie und Praxis der wissenschaftlichen Zahntechnik,
N Suansuwan, and M V Swain
January 1982, Protetyka stomatologiczna,
N Suansuwan, and M V Swain
March 1982, Das Dental-Labor. Le Laboratoire dentaire. The Dental laboratory,
N Suansuwan, and M V Swain
December 1981, Das Dental-Labor. Le Laboratoire dentaire. The Dental laboratory,
N Suansuwan, and M V Swain
January 2005, Brazilian dental journal,
N Suansuwan, and M V Swain
October 1985, Dental clinics of North America,
N Suansuwan, and M V Swain
May 1983, Das Dental-Labor. Le Laboratoire dentaire. The Dental laboratory,
N Suansuwan, and M V Swain
May 1975, Shika rikogaku zasshi. Journal of the Japan Society for Dental Apparatus and Materials,
Copied contents to your clipboard!