Endothelial microtubule disruption blocks flow-dependent dilation of arterioles. 2001

D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
Department of Physiology, New York Medical College, Valhalla, New York 10595, USA.

The cytoskeleton is believed to have an important role in the structural and functional integrity of endothelial cells. The role of the endothelial cytoskeleton, specifically microtubules, in the mediation of flow-induced dilation of arterioles has not yet been studied. Thus the aim of our study was to investigate the role of microtubules in the endothelial mechanotransduction of flow-induced dilation of isolated gracilis arterioles of the rat. The active diameter of arterioles at a constant perfusion pressure (80 mmHg) was approximately 63 microm, whereas their passive diameter (Ca(2+)-free solution) was approximately 119 microm. At a constant pressure, increases in flow of the perfusate solution (from 0 to 10 and from 10 to 20 microl/min) elicited increases in diameter up to approximately 95 microm (approximately a 53% increase). Intraluminal administration of nocodazole at concentrations of 5 x 10(-9) and 5 x 10(-8) M had no discernible effects on the structure of endothelial microtubules or on flow-induced dilation, whereas it disassembled microtubules and eliminated flow-induced dilation at a concentration of 5 x 10(-7) M. At this higher concentration, however, the basal diameter and dilations to acetylcholine (10(-8) M), sodium nitroprusside (10(-7) M), arachidonic acid (5 x 10(-6) M), and prostaglandin E2 (10(-8) M) were unaffected. Colchicine (5 x 10(-7) M) also disassembled microtubules and eliminated flow-induced dilation. We concluded that, in isolated arterioles, the integrity of the endothelial cytoskeleton is essential for the transduction of the shear stress signal that results in the release of endothelial factors evoking dilation.

UI MeSH Term Description Entries
D008297 Male Males
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001160 Arterioles The smallest divisions of the arteries located between the muscular arteries and the capillaries. Arteriole
D013314 Stress, Mechanical A purely physical condition which exists within any material because of strain or deformation by external forces or by non-uniform thermal expansion; expressed quantitatively in units of force per unit area. Mechanical Stress,Mechanical Stresses,Stresses, Mechanical
D014664 Vasodilation The physiological widening of BLOOD VESSELS by relaxing the underlying VASCULAR SMOOTH MUSCLE. Vasodilatation,Vasorelaxation,Vascular Endothelium-Dependent Relaxation,Endothelium-Dependent Relaxation, Vascular,Relaxation, Vascular Endothelium-Dependent,Vascular Endothelium Dependent Relaxation

Related Publications

D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
October 1990, The American journal of physiology,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
February 1993, The American journal of physiology,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
January 1997, Artificial cells, blood substitutes, and immobilization biotechnology,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
May 2008, Medical & biological engineering & computing,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
April 2000, Acta physiologica Scandinavica,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
January 1986, Circulatory shock,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
October 1998, The American journal of physiology,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
January 1995, The American journal of physiology,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
June 1993, Circulation research,
D Sun, and A Huang, and S Sharma, and A Koller, and G Kaley
October 2011, American journal of hypertension,
Copied contents to your clipboard!