GABAergic modulation of ventilation and peak oxygen consumption in obese Zucker rats. 2001

S D Lee, and H Nakano, and G A Farkas
Department of Physical Therapy, Exercise, and Nutrition Sciences, State University of New York at Buffalo, 14214-3079, USA.

Obesity is often associated with a reduced ventilatory response and a decreased maximal exercise capacity. GABA is a major inhibitory neurotransmitter in the mammalian central nervous system. Altered GABAergic mechanisms have been detected in obese Zucker rats and implicated in their hyperphagic response. Whether altered GABAergic mechanisms also contribute to regulate ventilation and influence exercise capacity in obese Zucker rats is unknown and formed the basis of the present study. Eight lean [317 +/- 18 (SD) g] and eight obese (450 +/- 27 g) Zucker rats were studied at 12 wk of age. Ventilation at rest and ventilation during hypoxic (10% O(2)) and hypercapnic (4% CO(2)) challenges were measured by the barometric method. Peak O(2) consumption (VO(2 peak)) in response to a progressive treadmill test to exhaustion was measured in a metabolic treadmill. Ventilation and VO(2 peak) were assessed after administration of equal volumes of DMSO (vehicle) and the GABA(A) receptor antagonist bicuculline (1 mg/kg). In lean animals, bicuculline administration had no effect on ventilation and VO(2 peak). In obese rats, bicuculline administration significantly (P < 0.05) increased resting ventilation (465 +/- 53 and 542 +/- 72 ml. kg(-1). min(-1) for control and bicuculline, respectively), ventilation during exposure to hypoxia (899 +/- 148 and 1,038 +/- 83 ml. kg(-1). min(-1) for control and bicuculline, respectively), and VO(2 peak) (62 +/- 3.7 and 67 +/- 3.5 ml. kg(-0.75). min(-1) for control and bicuculline, respectively). However, in obese Zucker rats, ventilation in response to hypercapnia did not change after bicuculline administration (608 +/- 96 vs. 580 +/- 69 ml. kg(-1). min(-1)). Our findings indicate that endogenous GABA depresses ventilation and limits exercise performance in obese Zucker rats.

UI MeSH Term Description Entries
D008297 Male Males
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011924 Rats, Zucker Two populations of Zucker rats have been cited in research--the "fatty" or obese and the lean. The "fatty" rat (Rattus norvegicus) appeared as a spontaneous mutant. The obese condition appears to be due to a single recessive gene. Zucker Rat,Zucker Rats,Rat, Zucker
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S D Lee, and H Nakano, and G A Farkas
July 1984, The American journal of physiology,
S D Lee, and H Nakano, and G A Farkas
February 2005, International journal of obesity (2005),
S D Lee, and H Nakano, and G A Farkas
August 1994, American journal of respiratory and critical care medicine,
S D Lee, and H Nakano, and G A Farkas
November 1984, The American journal of physiology,
S D Lee, and H Nakano, and G A Farkas
November 1986, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S D Lee, and H Nakano, and G A Farkas
October 1969, Experientia,
S D Lee, and H Nakano, and G A Farkas
December 1988, Pharmacological research communications,
S D Lee, and H Nakano, and G A Farkas
July 2001, Obesity research,
S D Lee, and H Nakano, and G A Farkas
June 2007, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!