Mechanisms of recruitment in oleic acid-injured lungs. 2001

M A Martynowicz, and B J Walters, and R D Hubmayr
Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine and Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA.

Lung recruitment strategies, such as the application of positive end-expiratory pressure (PEEP), are thought to protect the lungs from ventilator-associated injury by reducing the shear stress associated with the repeated opening of collapsed peripheral units. Using the parenchymal marker technique, we measured regional lung deformations in 13 oleic acid (OA)-injured dogs during mechanical ventilation in different postures. Whereas OA injury caused a marked decrease in the oscillation amplitude of dependent lung regions, even the most dependent regions maintained normal end-expiratory dimensions. This is because dependent lung is flooded as opposed to collapsed. PEEP restored oscillation amplitudes only at pressures that raised regional volumes above preinjury levels. Because the amount of PEEP necessary to promote dependent lung recruitment increased the end-expiratory dimensions of all lung regions (nondependent AND dependent ones) compared with their preinjury baseline, the "price" for recruitment is a universal increase in parenchymal stress. We conclude that the mechanics of the OA-injured lung might be more appropriately viewed as a partial liquid ventilation problem and not a shear stress and airway collapse problem and that the mechanisms of PEEP-related lung protection might have to be rethought.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010313 Partial Pressure The pressure that would be exerted by one component of a mixture of gases if it were present alone in a container. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Partial Pressures,Pressure, Partial,Pressures, Partial
D011175 Positive-Pressure Respiration A method of mechanical ventilation in which pressure is maintained to increase the volume of gas remaining in the lungs at the end of expiration, thus reducing the shunting of blood through the lungs and improving gas exchange. Positive End-Expiratory Pressure,Positive-Pressure Ventilation,End-Expiratory Pressure, Positive,End-Expiratory Pressures, Positive,Positive End Expiratory Pressure,Positive End-Expiratory Pressures,Positive Pressure Respiration,Positive Pressure Ventilation,Positive-Pressure Respirations,Positive-Pressure Ventilations,Pressure, Positive End-Expiratory,Pressures, Positive End-Expiratory,Respiration, Positive-Pressure,Respirations, Positive-Pressure,Ventilation, Positive-Pressure,Ventilations, Positive-Pressure
D011187 Posture The position or physical attitude of the body. Postures
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse

Related Publications

M A Martynowicz, and B J Walters, and R D Hubmayr
December 1990, Journal of applied physiology (Bethesda, Md. : 1985),
M A Martynowicz, and B J Walters, and R D Hubmayr
June 1996, The Journal of surgical research,
M A Martynowicz, and B J Walters, and R D Hubmayr
September 1989, Critical care medicine,
M A Martynowicz, and B J Walters, and R D Hubmayr
March 1987, Critical care medicine,
M A Martynowicz, and B J Walters, and R D Hubmayr
December 1987, The Kobe journal of medical sciences,
M A Martynowicz, and B J Walters, and R D Hubmayr
March 1994, Surgery,
M A Martynowicz, and B J Walters, and R D Hubmayr
March 2005, Mathematical medicine and biology : a journal of the IMA,
M A Martynowicz, and B J Walters, and R D Hubmayr
February 1996, The European journal of surgery = Acta chirurgica,
M A Martynowicz, and B J Walters, and R D Hubmayr
April 2002, Seminars in immunology,
M A Martynowicz, and B J Walters, and R D Hubmayr
March 2017, Respiratory physiology & neurobiology,
Copied contents to your clipboard!