Fall in intracellular PO(2) at the onset of contractions in Xenopus single skeletal muscle fibers. 2001

M C Hogan
Department of Medicine, University of California, San Diego, La Jolla 92093-0623, USA. mchogan@ucsd.edu

It remains uncertain whether the delayed onset of mitochondrial respiration on initiation of muscle contractions is related to O(2) availability. The purpose of this research was to measure the kinetics of the fall in intracellular PO(2) at the onset of a contractile work period in rested and previously worked single skeletal muscle fibers. Intact single skeletal muscle fibers (n = 11) from Xenopus laevis were dissected from the lumbrical muscle, injected with an O(2)-sensitive probe, mounted in a glass chamber, and perfused with Ringer solution (PO(2) = 32 +/- 4 Torr and pH = 7.0) at 20 degrees C. Intracellular PO(2) was measured in each fiber during a protocol consisting sequentially of 1-min rest; 3 min of tetanic contractions (1 contraction/2 s); 5-min rest; and, finally, a second 3-min contractile period identical to the first. Maximal force development and the fall in force (to 83 +/- 2 vs. 86 +/- 3% of maximal force development) in contractile periods 1 and 2, respectively, were not significantly different. The time delay (time before intracellular PO(2) began to decrease after the onset of contractions) was significantly greater (P < 0.01) in the first contractile period (13 +/- 3 s) compared with the second (5 +/- 2 s), as was the time to reach 50% of the contractile steady-state intracellular PO(2) (28 +/- 5 vs. 18 +/- 4 s, respectively). In Xenopus single skeletal muscle fibers, 1) the lengthy response time for the fall in intracellular PO(2) at the onset of contractions suggests that intracellular factors other than O(2) availability determine the on-kinetics of oxidative phosphorylation and 2) a prior contractile period results in more rapid on-kinetics.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D010313 Partial Pressure The pressure that would be exerted by one component of a mixture of gases if it were present alone in a container. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Partial Pressures,Pressure, Partial,Pressures, Partial
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D018485 Muscle Fibers, Skeletal Large, multinucleate single cells, either cylindrical or prismatic in shape, that form the basic unit of SKELETAL MUSCLE. They consist of MYOFIBRILS enclosed within and attached to the SARCOLEMMA. They are derived from the fusion of skeletal myoblasts (MYOBLASTS, SKELETAL) into a syncytium, followed by differentiation. Myocytes, Skeletal,Myotubes,Skeletal Myocytes,Skeletal Muscle Fibers,Fiber, Skeletal Muscle,Fibers, Skeletal Muscle,Muscle Fiber, Skeletal,Myocyte, Skeletal,Myotube,Skeletal Muscle Fiber,Skeletal Myocyte

Related Publications

M C Hogan
January 1974, Pflugers Archiv : European journal of physiology,
M C Hogan
August 2013, American journal of physiology. Regulatory, integrative and comparative physiology,
M C Hogan
January 2007, American journal of physiology. Regulatory, integrative and comparative physiology,
M C Hogan
December 1988, Canadian journal of physiology and pharmacology,
M C Hogan
June 2003, Journal of applied physiology (Bethesda, Md. : 1985),
M C Hogan
December 2001, Journal of applied physiology (Bethesda, Md. : 1985),
M C Hogan
November 1999, The American journal of physiology,
M C Hogan
January 1976, The Japanese journal of physiology,
M C Hogan
November 2011, American journal of physiology. Regulatory, integrative and comparative physiology,
M C Hogan
July 1985, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!