gamma-Aminobutyric acid(A) neurotransmission and cerebral ischemia. 2001

R D Schwartz-Bloom, and R Sah
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA. schwa001@duke.edu

In this review, we present evidence for the role of gamma-aminobutyric acid (GABA) neurotransmission in cerebral ischemia-induced neuronal death. While glutamate neurotransmission has received widespread attention in this area of study, relatively few investigators have focused on the ischemia-induced alterations in inhibitory neurotransmission. We present a review of the effects of cerebral ischemia on pre and postsynaptic targets within the GABAergic synapse. Both in vitro and in vivo models of ischemia have been used to measure changes in GABA synthesis, release, reuptake, GABA(A) receptor expression and activity. Cellular events generated by ischemia that have been shown to alter GABA neurotransmission include changes in the Cl(-) gradient, reduction in ATP, increase in intracellular Ca(2+), generation of reactive oxygen species, and accumulation of arachidonic acid and eicosanoids. Neuroprotective strategies to increase GABA neurotransmission target both sides of the synapse as well, by preventing GABA reuptake and metabolism and increasing GABA(A) receptor activity with agonists and allosteric modulators. Some of these strategies are quite efficacious in animal models of cerebral ischemia, with sedation as the only unwanted side-effect. Based on promising animal data, clinical trials with GABAergic drugs are in progress for specific types of stroke. This review attempts to provide an understanding of the mechanisms by which GABA neurotransmission is sensitive to cerebral ischemia. Furthermore, we discuss how dysfunction of GABA neurotransmission may contribute to neuronal death and how neuronal death can be prevented by GABAergic drugs.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001925 Brain Damage, Chronic A condition characterized by long-standing brain dysfunction or damage, usually of three months duration or longer. Potential etiologies include BRAIN INFARCTION; certain NEURODEGENERATIVE DISORDERS; CRANIOCEREBRAL TRAUMA; ANOXIA, BRAIN; ENCEPHALITIS; certain NEUROTOXICITY SYNDROMES; metabolic disorders (see BRAIN DISEASES, METABOLIC); and other conditions. Encephalopathy, Chronic,Chronic Encephalopathy,Chronic Brain Damage
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002144 Callithrix A genus of the subfamily CALLITRICHINAE occurring in forests of Brazil and Bolivia and containing seventeen species. Callithrix jacchus,Hapale,Marmoset, Common,Marmoset, Short-Tusked,Marmosets,Common Marmoset,Common Marmosets,Marmoset,Marmoset, Short Tusked,Short-Tusked Marmoset,Short-Tusked Marmosets
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies

Related Publications

R D Schwartz-Bloom, and R Sah
January 1968, Fiziologia normala si patologica,
R D Schwartz-Bloom, and R Sah
October 1999, Annals of internal medicine,
R D Schwartz-Bloom, and R Sah
April 1971, Zeitschrift fur arztliche Fortbildung,
R D Schwartz-Bloom, and R Sah
January 1977, Voprosy meditsinskoi khimii,
R D Schwartz-Bloom, and R Sah
February 1966, Activitas nervosa superior,
R D Schwartz-Bloom, and R Sah
July 1960, Agressologie: revue internationale de physio-biologie et de pharmacologie appliquees aux effets de l'agression,
Copied contents to your clipboard!