Theory of periodic swarming of bacteria: application to Proteus mirabilis. 2001

A Czirók, and M Matsushita, and T Vicsek
Department of Biological Physics, Eötvös University, Budapest, Hungary. czirok@biol-phys.elte.hu

The periodic swarming of bacteria is one of the simplest examples for pattern formation produced by the self-organized collective behavior of a large number of organisms. In the spectacular colonies of Proteus mirabilis (the most common species exhibiting this type of growth), a series of concentric rings are developed as the bacteria multiply and swarm following a scenario that periodically repeats itself. We have developed a theoretical description for this process in order to obtain a deeper insight into some of the typical processes governing the phenomena in systems of many interacting living units. Our approach is based on simple assumptions directly related to the latest experimental observations on colony formation under various conditions. The corresponding one-dimensional model consists of two coupled differential equations investigated here both by numerical integrations and by analyzing the various expressions obtained from these equations using a few natural assumptions about the parameters of the model. We determine the phase diagram corresponding to systems exhibiting periodic swarming, and discuss in detail how the various stages of the colony development can be interpreted in our framework. We point out that all of our theoretical results are in excellent agreement with the complete set of available observations. Thus the present study represents one of the few examples where self-organized biological pattern formation is understood within a relatively simple theoretical approach, leading to results and predictions fully compatible with experiments.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009038 Motion Physical motion, i.e., a change in position of a body or subject as a result of an external force. It is distinguished from MOVEMENT, a process resulting from biological activity. Motions
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D011157 Population Dynamics The pattern of any process, or the interrelationship of phenomena, which affects growth or change within a population. Malthusianism,Neomalthusianism,Demographic Aging,Demographic Transition,Optimum Population,Population Decrease,Population Pressure,Population Replacement,Population Theory,Residential Mobility,Rural-Urban Migration,Stable Population,Stationary Population,Aging, Demographic,Decrease, Population,Decreases, Population,Demographic Transitions,Dynamics, Population,Migration, Rural-Urban,Migrations, Rural-Urban,Mobilities, Residential,Mobility, Residential,Optimum Populations,Population Decreases,Population Pressures,Population Replacements,Population Theories,Population, Optimum,Population, Stable,Population, Stationary,Populations, Optimum,Populations, Stable,Populations, Stationary,Pressure, Population,Pressures, Population,Replacement, Population,Replacements, Population,Residential Mobilities,Rural Urban Migration,Rural-Urban Migrations,Stable Populations,Stationary Populations,Theories, Population,Theory, Population,Transition, Demographic,Transitions, Demographic
D011513 Proteus mirabilis A species of gram-negative, facultatively anaerobic, rod-shaped bacteria that is frequently isolated from clinical specimens. Its most common site of infection is the urinary tract.
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological
D015169 Colony Count, Microbial Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing. Agar Dilution Count,Colony-Forming Units Assay, Microbial,Fungal Count,Pour Plate Count,Spore Count,Spread Plate Count,Streak Plate Count,Colony Forming Units Assay, Microbial,Colony Forming Units Assays, Microbial,Agar Dilution Counts,Colony Counts, Microbial,Count, Agar Dilution,Count, Fungal,Count, Microbial Colony,Count, Pour Plate,Count, Spore,Count, Spread Plate,Count, Streak Plate,Counts, Agar Dilution,Counts, Fungal,Counts, Microbial Colony,Counts, Pour Plate,Counts, Spore,Counts, Spread Plate,Counts, Streak Plate,Dilution Count, Agar,Dilution Counts, Agar,Fungal Counts,Microbial Colony Count,Microbial Colony Counts,Pour Plate Counts,Spore Counts,Spread Plate Counts,Streak Plate Counts

Related Publications

A Czirók, and M Matsushita, and T Vicsek
June 2010, Infection and immunity,
A Czirók, and M Matsushita, and T Vicsek
May 1999, Journal of clinical microbiology,
A Czirók, and M Matsushita, and T Vicsek
October 1963, Journal of general microbiology,
A Czirók, and M Matsushita, and T Vicsek
January 2019, Methods in molecular biology (Clifton, N.J.),
A Czirók, and M Matsushita, and T Vicsek
May 1983, Journal of bacteriology,
A Czirók, and M Matsushita, and T Vicsek
July 2012, The ISME journal,
A Czirók, and M Matsushita, and T Vicsek
July 1977, Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe A: Medizinische Mikrobiologie und Parasitologie,
A Czirók, and M Matsushita, and T Vicsek
July 2013, Journal of bacteriology,
A Czirók, and M Matsushita, and T Vicsek
February 2015, Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi,
A Czirók, and M Matsushita, and T Vicsek
August 1981, Journal of general microbiology,
Copied contents to your clipboard!