Cycles of transcription and translation do not comprise the gonadotropin-releasing hormone pulse generator in GT1 cells. 2001

G R Pitts, and C S Nunemaker, and S M Moenter
Departments of Internal Medicine, Cell Biology, and the National Science Foundation Center for Biological Timing, University of Virginia, Charlottesville, Virginia 22908.

Neural control of reproduction is achieved through episodic GnRH secretion, but little is known about the molecular mechanisms underlying pulse generation. The ultradian time domain of GnRH release suggests mechanisms ranging from macromolecular synthesis to posttranslational modification could be involved. We tested if messenger RNA (mRNA) or protein synthesis are components of the pulse generator by determining the effects of transcription and translation inhibitors on episodic GnRH release from immortalized GT1-1 GnRH neurons. Time course and efficacy of transcription and translation blockade were assessed by determining the ability of specific inhibitors to block the robust, rapid induction of c-fos mRNA or protein accumulation by forskolin (10 microM). The transcription inhibitors actinomycin D (ACT-D, 20 microM) or 5,6-dichlorobenzimidazole riboside (DRB, 100 microM), or the translation inhibitors anisomycin (ANI, 10 microM) or puromycin (PUR, 10 microM) were applied to GT1-1 cells 30, 15, or 0 min before forskolin. Northern and Western blots revealed blockade of transcription and translation was rapid and essentially complete. GT1-1 cells were perifused for a 90- to 120-min control period then for 100-130 min with vehicle or inhibitor to examine pulsatile GnRH secretion. GnRH interpeak intervals, peak amplitude, and peak area were not different between control and experimental periods of cells treated with vehicle (n = 15), ACT-D (n = 10), DRB (n = 6), ANI (n = 8), and PUR (n = 6; P > 0.05). This study presents the first clear evidence that the series of reactions resulting in secretion of a GnRH pulse do not include cycles of transcription and translation. Although these mechanisms would be required to replenish components of the pulse generator, they are not integral components of this oscillator. We hypothesize that posttranslational events underlie episodic GnRH release in GT1-1 cells.

UI MeSH Term Description Entries
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D011691 Puromycin A cinnamamido ADENOSINE found in STREPTOMYCES alboniger. It inhibits protein synthesis by binding to RNA. It is an antineoplastic and antitrypanosomal agent and is used in research as an inhibitor of protein synthesis. CL-13900,P-638,Puromycin Dihydrochloride,Puromycin Hydrochloride,Stylomycin,CL 13900,CL13900,P 638,P638
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000841 Anisomycin An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system. Flagecidin
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

G R Pitts, and C S Nunemaker, and S M Moenter
November 2018, Endocrinology,
G R Pitts, and C S Nunemaker, and S M Moenter
April 1997, Journal of neuroendocrinology,
G R Pitts, and C S Nunemaker, and S M Moenter
October 1993, Endocrinology,
G R Pitts, and C S Nunemaker, and S M Moenter
September 1990, Clinical obstetrics and gynecology,
G R Pitts, and C S Nunemaker, and S M Moenter
December 1998, Neuroendocrinology,
G R Pitts, and C S Nunemaker, and S M Moenter
April 1993, Neuroendocrinology,
G R Pitts, and C S Nunemaker, and S M Moenter
August 2005, Neuroscience letters,
Copied contents to your clipboard!