Successful unrelated donor bone marrow transplantation for paroxysmal nocturnal hemoglobinuria. 2001

P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
Division of Bone Marrow Transplantation, Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal disease of hematopoiesis due to a mutation in the PIG-A gene. Affected patients may demonstrate hemolysis or venous thrombosis, and may develop MDS or aplastic anemia. Successful results may be obtained after conditioning and transplantation from syngeneic or genotypically matched sibling donors. Experience with transplantation from matched unrelated donors (MUD) is limited to eight patients, with only one survivor. We report three patients who underwent successful MUD BMT for PNH. All three patients had severe aplastic anemia (SAA) and PNH at the time of BMT. Unrelated donors were six-antigen HLA-matched (n = 2) or HLA-A mismatched (n = 1). Conditioning consisted of cytarabine, cyclophosphamide, TBI, and ATG. Grafts were T cell-depleted by anti-CD6/CD8 antibodies + complement. Further GVHD prophylaxis consisted of cyclosporine. Patients received 0.7-1.1 x 10(8) nucleated cells/kg and 1.1-2.1 x 10(6) CD34(+) cells/kg. Neutrophil engraftment occurred at 16-21 days. One patient developed grade 1 acute GVHD. Although all three patients experienced significant transplant-related complications, they ultimately resolved and all patients are alive and well 30-62 months after BMT. T cell-depleted MUD BMT is an effective treatment option for PNH-related MDS and SAA.

UI MeSH Term Description Entries
D008212 Lymphocyte Depletion Immunosuppression by reduction of circulating lymphocytes or by T-cell depletion of bone marrow. The former may be accomplished in vivo by thoracic duct drainage or administration of antilymphocyte serum. The latter is performed ex vivo on bone marrow before its transplantation. Depletion, Lymphocyte
D006086 Graft vs Host Disease The clinical entity characterized by anorexia, diarrhea, loss of hair, leukopenia, thrombocytopenia, growth retardation, and eventual death brought about by the GRAFT VS HOST REACTION. Graft-Versus-Host Disease,Homologous Wasting Disease,Runt Disease,Graft-vs-Host Disease,Disease, Graft-Versus-Host,Disease, Graft-vs-Host,Disease, Homologous Wasting,Disease, Runt,Diseases, Graft-Versus-Host,Diseases, Graft-vs-Host,Graft Versus Host Disease,Graft-Versus-Host Diseases,Graft-vs-Host Diseases
D006457 Hemoglobinuria, Paroxysmal A condition characterized by the recurrence of HEMOGLOBINURIA caused by intravascular HEMOLYSIS. In cases occurring upon cold exposure (paroxysmal cold hemoglobinuria), usually after infections, there is a circulating antibody which is also a cold hemolysin. In cases occurring during or after sleep (paroxysmal nocturnal hemoglobinuria), the clonal hematopoietic stem cells exhibit a global deficiency of cell membrane proteins. Paroxysmal Cold Hemoglobinuria,Paroxysmal Nocturnal Hemoglobinuria,Marchiafava-Micheli Syndrome,Paroxysmal Hemoglobinuria,Paroxysmal Hemoglobinuria, Cold,Paroxysmal Hemoglobinuria, Nocturnal,Cold Paroxysmal Hemoglobinuria,Hemoglobinuria, Cold Paroxysmal,Hemoglobinuria, Nocturnal Paroxysmal,Hemoglobinuria, Paroxysmal Cold,Hemoglobinuria, Paroxysmal Nocturnal,Marchiafava Micheli Syndrome,Nocturnal Paroxysmal Hemoglobinuria,Syndrome, Marchiafava-Micheli
D006648 Histocompatibility The degree of antigenic similarity between the tissues of different individuals, which determines the acceptance or rejection of allografts. HLA Incompatibility,Histoincompatibility,Human Leukocyte Antigen Incompatibility,Immunocompatibility,Tissue Compatibility,Compatibility, Tissue,HLA Incompatibilities,Histocompatibilities,Histoincompatibilities,Immunocompatibilities,Incompatibility, HLA,Tissue Compatibilities
D006650 Histocompatibility Testing Identification of the major histocompatibility antigens of transplant DONORS and potential recipients, usually by serological tests. Donor and recipient pairs should be of identical ABO blood group, and in addition should be matched as closely as possible for HISTOCOMPATIBILITY ANTIGENS in order to minimize the likelihood of allograft rejection. (King, Dictionary of Genetics, 4th ed) Crossmatching, Tissue,HLA Typing,Tissue Typing,Crossmatchings, Tissue,HLA Typings,Histocompatibility Testings,Testing, Histocompatibility,Testings, Histocompatibility,Tissue Crossmatching,Tissue Crossmatchings,Tissue Typings,Typing, HLA,Typing, Tissue,Typings, HLA,Typings, Tissue
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000741 Anemia, Aplastic A form of anemia in which the bone marrow fails to produce adequate numbers of peripheral blood elements. Anemia, Hypoplastic,Aplastic Anaemia,Aplastic Anemia,Anaemia, Aplastic,Aplastic Anaemias,Aplastic Anemias,Hypoplastic Anemia,Hypoplastic Anemias
D014019 Tissue Donors Individuals supplying living tissue, organs, cells, blood or blood components for transfer or transplantation to histocompatible recipients. Organ Donors,Donors,Ovum Donors,Semen Donors,Transplant Donors,Donor,Donor, Organ,Donor, Ovum,Donor, Semen,Donor, Tissue,Donor, Transplant,Donors, Organ,Donors, Ovum,Donors, Semen,Donors, Tissue,Donors, Transplant,Organ Donor,Ovum Donor,Semen Donor,Tissue Donor,Transplant Donor

Related Publications

P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
January 2005, Annals of transplantation,
P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
January 2000, Haematologica,
P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
January 2000, Haematologica,
P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
April 1992, American journal of hematology,
P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
October 2011, International journal of hematology,
P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
April 2009, Hematology/oncology clinics of North America,
P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
May 2001, Experimental hematology,
P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
May 1999, British journal of haematology,
P Woodard, and W Wang, and N Pitts, and E Benaim, and E Horwitz, and J Cunningham, and L Bowman
June 1980, Blood,
Copied contents to your clipboard!