Trans-stilbene oxide-induced sister chromatid exchange in cultured human lymphocytes: influence of GSTM1 and GSTT1 genotypes. 2001

S Bernardini, and A Hirvonen, and H Järventaus, and H Norppa
Laboratory of Molecular and Cellular Toxicology, Department of Industrial Hygiene and Toxicology, Finnish Institute of Occupational Health, Topeliuksenkatu 41 b, FIN-00250 Helsinki, Finland.

About 50% and 15% of Caucasians lack the glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genes and the corresponding enzyme activity, respectively. Both of these polymorphisms have been shown to affect the genotoxicity of some epoxides in cultured human lymphocytes. Especially GSTT1 appears to be important in whole-blood cultures, probably because GSTT1 activity is high in erythrocytes. The in vitro genotoxicity of trans-stilbene oxide (TSO), a model substrate for GSTM1, has been shown to depend on individual GSTM1 activity. The potential role of GSTM1 genotype, and the possible interference of GSTT1 genotype, has not previously been examined in this context. We have studied TSO-induced sister chromatid exchanges (SCEs) in 72 h whole-blood lymphocyte cultures from 24 healthy human donors, representing different combinations of GSTM1 and GSTT1 positive and null genotypes. TSO clearly increased SCEs in cultures of all donors. The mean number of SCEs per cell induced by 75 and 150 microM TSO was, respectively, 1.5- and 1.3-times higher in cultures of GSTM1 null than GSTM1 positive donors. In another experiment, GSTM1 null individuals showed, in comparison with GSTM1 positive subjects, a 1.8-fold SCE induction by 50 microM TSO. GSTT1 genotype did not have an unequivocal effect. Our findings suggest that the lack of the GSTM1 gene, resulting in reduced detoxification capacity, increases individual sensitivity to the genotoxic effects of TSO.

UI MeSH Term Description Entries
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione
D006720 Homozygote An individual in which both alleles at a given locus are identical. Homozygotes

Related Publications

S Bernardini, and A Hirvonen, and H Järventaus, and H Norppa
January 1998, Environmental and molecular mutagenesis,
S Bernardini, and A Hirvonen, and H Järventaus, and H Norppa
January 1980, Environmental mutagenesis,
S Bernardini, and A Hirvonen, and H Järventaus, and H Norppa
May 1981, Mutation research,
S Bernardini, and A Hirvonen, and H Järventaus, and H Norppa
December 1979, Mutation research,
S Bernardini, and A Hirvonen, and H Järventaus, and H Norppa
January 1982, Pharmacology,
S Bernardini, and A Hirvonen, and H Järventaus, and H Norppa
November 1998, International archives of occupational and environmental health,
S Bernardini, and A Hirvonen, and H Järventaus, and H Norppa
February 2000, Mutation research,
Copied contents to your clipboard!