Thermodynamic molecular switch in macromolecular interactions. 2000

P W Chun
Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville 32610-0245, USA. pwchun@biochem.med.ufl.edu

It is known that most living systems can live and operate optimally only at a sharply defined temperature, or over a limited temperature range, at best, which implies that many basic biochemical interactions exhibit a well-defined Gibbs free energy minimum as a function of temperature. The Gibbs free energy change, deltaG(o) (T), for biological systems shows a complicated behavior, in which deltaG(o)(T) changes from positive to negative, then reaches a negative value of maximum magnitude (favorable), and finally becomes positive as temperature increases. The critical factor in this complicated thermodynamic behavior is a temperature-dependent heat capacity change (deltaCp(o)(T) of reaction, which is positive at low temperature, but switches to a negative value at a temperature well below the ambient range. Thus, the thermodynamic molecular switch determines the behavior patterns of the Gibbs free energy change, and hence a change in the equilibrium constant, Keq, and/or spontaneity. The subsequent, mathematically predictable changes in deltaH(o)(T), deltaS(o)(T), deltaW(o)(T), and deltaG(o)(T) give rise to the classically observed behavior patterns in biological reactivity, as demonstrated in three interacting protein systems: the acid dimerization reaction of alpha-chymotrypsin at low pH, interaction of chromogranin A with the intraluminal loop peptide of the inositol 1,4,5-triphosphate receptor at pH 5.5, and the binding of L-arabinose and D-galactose to the L-arabinose binding protein of Escherichia coli. In cases of protein unfolding of four mutants of phage T4 lysozyme, no thermodynamic molecular switch is observed.

UI MeSH Term Description Entries
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002151 Calorimetry The measurement of the quantity of heat involved in various processes, such as chemical reactions, changes of state, and formations of solutions, or in the determination of the heat capacities of substances. The fundamental unit of measurement is the joule or the calorie (4.184 joules). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002864 Chromogranins A group of acidic proteins that are major components of SECRETORY GRANULES in the endocrine and neuroendocrine cells. They play important roles in the aggregation, packaging, sorting, and processing of secretory protein prior to secretion. They are cleaved to release biologically active peptides. There are various types of granins, usually classified by their sources. Chromogranin,Granin,Secretogranin,Secretogranins,Granins
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005690 Galactose An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. D-Galactose,Galactopyranose,Galactopyranoside,D Galactose
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D001089 Arabinose L-Arabinose,L Arabinose

Related Publications

Copied contents to your clipboard!