Blocking effects of the antiarrhythmic drug propafenone on the HERG potassium channel. 2001

J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
Institut für Physiologie, Universität Münster, Germany.

Propafenone has been shown to affect the delayed-rectifier potassium currents in cardiomyocytes of different animal models. In this study we investigated effects and mechanisms of action of propafenone on HERG potassium channels in oocytes of Xenopus laevis with the two-electrode voltage-clamp technique. Propafenone decreased the currents during voltage steps and the tail currents. The block was voltage-dependent and increased with positive going potentials (from 18% block of tail current amplitude at -40 mV to 69% at +40 mV with 100 micromol/l propafenone). The voltage dependence of block could be fitted with the sum of a monoexponential and a linear function. The fractional electrical distance was estimated to be delta=0.20. The block of current during the voltage step increased with time starting from a level of 83% of the control current. Propafenone accelerated the increase of current during the voltage step as well as the decay of tail currents (time constants of monoexponential fits decreased by 65% for the currents during the voltage step and by 37% for the tail currents with 100 micromol/l propafenone). The threshold concentration of propafenone effect was around 1 micromol/l and the concentration of half-maximal block (IC50) ranged between 13 micromol/l and 15 micromol/l for both current components. With high extracellular potassium concentrations, the IC50 value rose to 80 degrees mol/l. Acidification of the extracellular solution to pH 6.0 increased the IC50 value to 123 micromol/l, alkalization to pH 8.0 reduced it to 10 micromol/l and coexpression of the beta-subunit minK had no statistically significant effect on the concentration dependence. In conclusion, propafenone has been found to block HERG potassium channels. The data suggest that propafenone affects the channels in the open state and give some hints for an intracellular site of action.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011405 Propafenone An antiarrhythmia agent that is particularly effective in ventricular arrhythmias. It also has weak beta-blocking activity. Apo-Propafenone,Arythmol,Baxarytmon,Cuxafenon,Fenoprain,Jutanorm,Nistaken,Norfenon,Pintoform,Prolecofen,Propafenon AL,Propafenon Hexal,Propafenon Minden,Propafenone Hydrochloride,Propafenone Hydrochloride, (R)-Isomer,Propafenone Hydrochloride, (S)-Isomer,Propafenone, (+-)-Isomer,Propafenone, (R)-Isomer,Propafenone, (S)-Isomer,Propamerck,Rythmol,Rytmo-Puren,Rytmogenat,Rytmonorm,SA-79,Hydrochloride, Propafenone,SA 79,SA79
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel
D051638 Ether-A-Go-Go Potassium Channels A family of voltage-gated potassium channels that are characterized by long N-terminal and C-terminal intracellular tails. They are named from the Drosophila protein whose mutation causes abnormal leg shaking under ether anesthesia. Their activation kinetics are dependent on extracellular MAGNESIUM and PROTON concentration. ERG Potassium Channels,Eag Potassium Channels,Eag-Related Potassium Channels,Ether-A-Go-Go Related Potassium Channels,Eag Related Potassium Channels,Ether A Go Go Potassium Channels,Ether A Go Go Related Potassium Channels,Potassium Channels, ERG,Potassium Channels, Eag,Potassium Channels, Eag-Related,Potassium Channels, Ether-A-Go-Go
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
February 2009, Journal of Korean medical science,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
March 2010, ChemMedChem,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
February 2001, Cardiovascular research,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
March 1999, Naunyn-Schmiedeberg's archives of pharmacology,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
March 2003, Molecular pharmacology,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
March 1993, The Journal of pharmacology and experimental therapeutics,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
February 2001, Biochemical and biophysical research communications,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
September 2015, Journal of molecular and cellular cardiology,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
June 2012, Acta pharmacologica Sinica,
J Mergenthaler, and W Haverkamp, and A Hüttenhofer, and B V Skryabin, and U Musshoff, and M Borggrefe, and E J Speckmann, and G Breithardt, and M Madeja
August 2008, Pharmacology & therapeutics,
Copied contents to your clipboard!