| D008160 |
Lumbosacral Plexus |
The lumbar and sacral plexuses taken together. The fibers of the lumbosacral plexus originate in the lumbar and upper sacral spinal cord (L1 to S3) and innervate the lower extremities. |
Inferior Cluneal Nerves,Lumbar Plexus,Posterior Femoral Cutaneous Nerve,Sacral Plexus,Cluneal Nerve, Inferior,Cluneal Nerves, Inferior,Inferior Cluneal Nerve,Nerve, Inferior Cluneal,Nerves, Inferior Cluneal,Plexus, Lumbar,Plexus, Lumbosacral,Plexus, Sacral |
|
| D008297 |
Male |
|
Males |
|
| D008815 |
Mice, Inbred Strains |
Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. |
Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse |
|
| D008854 |
Microscopy, Electron |
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. |
Electron Microscopy |
|
| D009137 |
Muscular Dystrophy, Animal |
MUSCULAR DYSTROPHY that occurs in VERTEBRATE animals. |
Animal Muscular Dystrophies,Animal Muscular Dystrophy,Dystrophies, Animal Muscular,Dystrophy, Animal Muscular,Muscular Dystrophies, Animal |
|
| D009186 |
Myelin Sheath |
The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. |
Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin |
|
| D009413 |
Nerve Fibers, Myelinated |
A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. |
A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated |
|
| D011901 |
Ranvier's Nodes |
Regularly spaced gaps in the myelin sheaths of peripheral axons. Ranvier's nodes allow saltatory conduction, that is, jumping of impulses from node to node, which is faster and more energetically favorable than continuous conduction. |
Nodes of Ranvier,Nodes, Ranvier's,Ranvier Nodes,Ranviers Nodes |
|
| D002572 |
Cervical Plexus |
A network of nerve fibers originating in the upper four CERVICAL SPINAL CORD segments. The cervical plexus distributes cutaneous nerves to parts of the neck, shoulders, and back of the head. It also distributes motor fibers to muscles of the cervical SPINAL COLUMN, infrahyoid muscles, and the DIAPHRAGM. |
Plexus, Cervical |
|
| D003593 |
Cytoplasm |
The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) |
Protoplasm,Cytoplasms,Protoplasms |
|