Protein kinase C-mediated down-regulation of MDR3 mRNA expression in Chang liver cells. 2001

S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
Department of Medicine, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, 920-1181, Kanazawa, Japan. s-wakusawa@hokuriku-u.ac.jp

MDR3 is a phospholipid translocator homologous to MDR1 P-glycoprotein. MDR3 localizes to the canalicular membrane and contributes to the secretion of bile. To elucidate the role of protein kinase C in the regulation of MDR3 gene expression, we investigated the effect of phorbol 12-myristate 13-acetate (PMA) on the level of MDR3 mRNA in human Chang liver cells by a reverse transcription-polymerase chain reaction method. The steady-state expression of MDR3 mRNA was decreased by PMA after treatment for 8-20 hr and at concentrations of 1-100 nM. PMA also decreased the doxorubicin-induced expression of MDR3 mRNA. 4alpha-Phorbol 12,13-didecanoate, a negative control compound, did not decrease the expression at these concentrations. The down-regulatory effect of PMA was partially suppressed by the protein kinase C inhibitors 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)maleimide (GF109203X) and calphostin C. Furthermore, cycloheximide, a protein synthesis inhibitor, antagonized the effect of PMA. From these results, it was suggested that the level of MDR3 mRNA was negatively regulated by a protein kinase C- and protein synthesis-dependent system and that the system regulated both the stable and inducible expression of MDR3 mRNA.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004317 Doxorubicin Antineoplastic antibiotic obtained from Streptomyces peucetius. It is a hydroxy derivative of DAUNORUBICIN. Adriamycin,Adriablastin,Adriablastine,Adriblastin,Adriblastina,Adriblastine,Adrimedac,DOXO-cell,Doxolem,Doxorubicin Hexal,Doxorubicin Hydrochloride,Doxorubicin NC,Doxorubicina Ferrer Farm,Doxorubicina Funk,Doxorubicina Tedec,Doxorubicine Baxter,Doxotec,Farmiblastina,Myocet,Onkodox,Ribodoxo,Rubex,Urokit Doxo-cell,DOXO cell,Hydrochloride, Doxorubicin,Urokit Doxo cell
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
October 2006, Biochimica et biophysica acta,
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
January 2003, Anticancer research,
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
July 1998, Molecular pharmacology,
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
November 1991, The Journal of biological chemistry,
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
March 1996, Molecular and cellular biochemistry,
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
February 1988, Biochemical and biophysical research communications,
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
March 1996, Journal of neurochemistry,
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
May 2001, Journal of neurochemistry,
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
December 1991, Journal of immunology (Baltimore, Md. : 1950),
S Wakusawa, and R Ikeda, and Y Shiono, and H Hayashi
August 1988, FEBS letters,
Copied contents to your clipboard!