Enhanced plasmid DNA transfection with lysosomotropic agents in cultured fibroblasts. 2001

K Ciftci, and R J Levy
Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA. kciftci@astro.ocis.temple.edu

Transfer of plasmid DNA into mammalian cells has posed major challenges for gene therapy. Most non-viral vectors are known to internalize in the cells by endocytosis. Therefore, low transfection efficiency of non-viral vectors may be due to intracellular degradation of input DNA in the endosomes and/or lysosomes. DNA degradation can be inhibited either by inactivating the lysosomal enzymes or obliterating endosome fusion to lysosomes using lysosomotropic agents. We report here the effects of individual lysosomotropic agents such as chloroquine, polyvinylpyrolidone (PVP) and sucrose on beta-gal expression in cultured fibroblasts COS, 293 and CHO. Cell viability was influenced by type, exposure time and concentration of lysosomotropic agents. Exposure to chloroquine at high concentration (1000 microM) or more than 4 h at any concentration (10-1000 microM) caused extensive cell death, however, cytotoxicity due to sucrose (5-500 mM) and PVP (0.01-1 mg/ml) was minimal in the cell lines tested. All the agents utilized in this study enhanced the gene expression and the transfection efficiency followed the order of sucrose>chloroquine>PVP at the concentrations used in all cell lines. Results suggest that lysosomotropic agents can enhance transfection efficiency but the degree of transgene expression may be cell- and agent-specific. Of the agents studied, sucrose appears to be an attractive agent in improving gene expression without toxic effect in the cultured fibroblasts. Thus, it can be used as an excipient in the formulation of new gene delivery systems.

UI MeSH Term Description Entries
D008247 Lysosomes A class of morphologically heterogeneous cytoplasmic particles in animal and plant tissues characterized by their content of hydrolytic enzymes and the structure-linked latency of these enzymes. The intracellular functions of lysosomes depend on their lytic potential. The single unit membrane of the lysosome acts as a barrier between the enzymes enclosed in the lysosome and the external substrate. The activity of the enzymes contained in lysosomes is limited or nil unless the vesicle in which they are enclosed is ruptured or undergoes MEMBRANE FUSION. (From Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed). Autolysosome,Autolysosomes,Lysosome
D008858 Microscopy, Phase-Contrast A form of interference microscopy in which variations of the refracting index in the object are converted into variations of intensity in the image. This is achieved by the action of a phase plate. Phase-Contrast Microscopy,Microscopies, Phase-Contrast,Microscopy, Phase Contrast,Phase Contrast Microscopy,Phase-Contrast Microscopies
D010592 Pharmaceutic Aids Substances which are of little or no therapeutic value, but are necessary in the manufacture, compounding, storage, etc., of pharmaceutical preparations or drug dosage forms. They include SOLVENTS, diluting agents, and suspending agents, and emulsifying agents. Also, ANTIOXIDANTS; PRESERVATIVES, PHARMACEUTICAL; COLORING AGENTS; FLAVORING AGENTS; VEHICLES; EXCIPIENTS; OINTMENT BASES. Aids, Pharmaceutic,Aids, Pharmaceutical,Pharmaceutical Aids
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011205 Povidone A polyvinyl polymer of variable molecular weight; used as suspending and dispersing agent and vehicle for pharmaceuticals; also used as blood volume expander. Polvidone,Polyvidon,Polyvinylpyrrolidone,Arufil,Bolinan,Bolinan 40,Crospovidone,Dulcilarmes,Duratears Free,Enterodes,Enterodez,Hypotears,Kollidon,Lacophtal,Lacri-Stulln,Lagrifilm,Liquifilm Lagrimas,Nutrivisc,Oculotect,PVP 40,Periston,Plasdone,Polyplasdone XL,Povidone, Unspecified,Protagens,Protagent,Unifluid,Vidirakt S mit PVP,Vidisic PVP Ophtiole,Wet-Comod,Dulcilarme,Enterode,Hypotear,Polyvidons,Protagen,Unspecified Povidone
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA

Related Publications

K Ciftci, and R J Levy
September 1992, Biulleten' eksperimental'noi biologii i meditsiny,
K Ciftci, and R J Levy
September 2016, Bioengineering & translational medicine,
K Ciftci, and R J Levy
May 1983, The Journal of pharmacology and experimental therapeutics,
K Ciftci, and R J Levy
March 1998, Biochimica et biophysica acta,
K Ciftci, and R J Levy
July 2001, European journal of cell biology,
K Ciftci, and R J Levy
January 2005, Zeitschrift fur Naturforschung. C, Journal of biosciences,
K Ciftci, and R J Levy
April 2012, Cold Spring Harbor protocols,
Copied contents to your clipboard!