Natural killer cell-endothelial cell interactions in xenotransplantation. 2000

J R Dawson, and A C Vidal, and A M Malyguine
Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA. dawso001@mc.duke.edu

Interest in xenotransplantation derives from the documented need for more organs and tissues than can be expected from living or cadaveric donors. Although the barriers to xenotransplantation are formidable, the scientific rewards in addressing these problems have been significant. The first and most potent barrier to xenotransplantation is hyperacute rejection mediated by xenoreactive natural antibodies and serum complement. The majority of the xenoreactive antibodies appear to be directed at terminal galactose epitopes, especially gal alpha1-3 gal. Significant progress has been made in surmounting hyperacute rejection, and this has led to an examination of underlying mechanisms of delayed xenograft rejection. One of these delayed mechanisms concerns the potential role of graft recipient, natural killer (NK) cells. NK cells can cause variable, low-level cytotoxicity of xenogeneic endothelial cells in vitro that may be enhanced in the presence of xenoreactive IgG. The specificity of NK cell-mediated cytotoxicity appears to overlap with a major subset of xenoreactive natural antibodies. These cytotoxic interactions can be regulated by "humanizing" the endothelial cells through expression of the appropriate human MHC class I genes. More important, NK cells induce endothelial cell activation, which results in changing the nature of the endothelial cell surface from an anticoagulant surface to a procoagulant surface. These findings parallel those observed in allogeneic NK cell-endothelial cell interactions and suggest these important observations may be extended to NK cell-endothelial cell interactions in general.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D003602 Cytotoxicity, Immunologic The phenomenon of target cell destruction by immunologically active effector cells. It may be brought about directly by sensitized T-lymphocytes or by lymphoid or myeloid "killer" cells, or it may be mediated by cytotoxic antibody, cytotoxic factor released by lymphoid cells, or complement. Tumoricidal Activity, Immunologic,Immunologic Cytotoxicity,Immunologic Tumoricidal Activities,Immunologic Tumoricidal Activity,Tumoricidal Activities, Immunologic
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D005805 Genes, MHC Class I Genetic loci in the vertebrate major histocompatibility complex which encode polymorphic characteristics not related to immune responsiveness or complement activity, e.g., B loci (chicken), DLA (dog), GPLA (guinea pig), H-2 (mouse), RT-1 (rat), HLA-A, -B, and -C class I genes of man. Class I Genes,Genes, Class I,Genes, H-2 Class I,Genes, HLA Class I,MHC Class I Genes,H-2 Class I Genes,HLA Class I Genes,Class I Gene,Gene, Class I,Genes, H 2 Class I,H 2 Class I Genes
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006789 Host vs Graft Reaction The immune responses of a host to a graft. A specific response is GRAFT REJECTION.
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog

Related Publications

J R Dawson, and A C Vidal, and A M Malyguine
December 1997, Journal of leukocyte biology,
J R Dawson, and A C Vidal, and A M Malyguine
January 2022, Frontiers in immunology,
J R Dawson, and A C Vidal, and A M Malyguine
October 1997, Current opinion in cell biology,
J R Dawson, and A C Vidal, and A M Malyguine
September 2015, Immunological reviews,
J R Dawson, and A C Vidal, and A M Malyguine
June 1990, Transplantation proceedings,
J R Dawson, and A C Vidal, and A M Malyguine
January 1994, Immunology series,
J R Dawson, and A C Vidal, and A M Malyguine
November 1993, Journal of immunology (Baltimore, Md. : 1950),
J R Dawson, and A C Vidal, and A M Malyguine
February 1997, Current opinion in immunology,
J R Dawson, and A C Vidal, and A M Malyguine
May 2021, Cancers,
Copied contents to your clipboard!