HMG-D complexed to a bulge DNA: an NMR model. 2001

R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
M.R.C. Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.

An NMR model is presented for the structure of HMG-D, one of the Drosophila counterparts of mammalian HMG1/2 proteins, bound to a particular distorted DNA structure, a dA(2) DNA bulge. The complex is in fast to intermediate exchange on the NMR chemical shift time scale and suffers substantial linebroadening for the majority of interfacial resonances. This essentially precludes determination of a high-resolution structure for the interface based on NMR data alone. However, by introducing a small number of additional constraints based on chemical shift and linewidth footprinting combined with analogies to known structures, an ensemble of model structures was generated using a computational strategy equivalent to that for a conventional NMR structure determination. We find that the base pair adjacent to the dA(2) bulge is not formed and that the protein recognizes this feature in forming the complex; intermolecular NOE enhancements are observed from the sidechain of Thr 33 to all four nucleotides of the DNA sequence step adjacent to the bulge. Our results form the first experimental demonstration that when binding to deformed DNA, non-sequence-specific HMG proteins recognize the junction between duplex and nonduplex DNA. Similarities and differences of the present structural model relative to other HMG-DNA complex structures are discussed.

UI MeSH Term Description Entries
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular
D019476 Insect Proteins Proteins found in any species of insect. Insect Protein,Protein, Insect,Proteins, Insect

Related Publications

R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
June 1996, Science (New York, N.Y.),
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
October 1983, Biopolymers,
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
May 1994, Biochemistry,
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
April 1992, Biochemistry,
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
June 1980, Nucleic acids research,
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
October 1997, Journal of magnetic resonance (San Diego, Calif. : 1997),
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
March 1995, The EMBO journal,
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
February 1987, Biochemistry,
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
October 2000, Nucleic acids research,
R Cerdan, and D Payet, and J C Yang, and A A Travers, and D Neuhaus
December 2004, Organic letters,
Copied contents to your clipboard!