Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. 2001

C Srisawat, and D R Engelke
Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109-0606, USA.

RNA affinity tags would be very useful for the study of RNAs and ribonucleoproteins (RNPs) as a means for rapid detection, immobilization, and purification. To develop a new affinity tag, streptavidin-binding RNA ligands, termed "aptamers," were identified from a random RNA library using in vitro selection. Individual aptamers were classified into two groups based on common sequences, and representative members of the groups had sufficiently low dissociation constants to suggest they would be useful affinity tools. Binding of the aptamers to streptavidin was blocked by presaturation of the streptavidin with biotin, and biotin could be used to dissociate RNA/streptavidin complexes. To investigate the practicality of using the aptamer as an affinity tag, one of the higher affinity aptamers was inserted into RPR1 RNA, the large RNA subunit of RNase P. The aptamer-tagged RNase P could be specifically isolated using commercially available streptavidin-agarose and recovered in a catalytically active form when biotin was used as an eluting agent under mild conditions. The aptamer tag was also used to demonstrate that RNase P exists in a monomeric form, and is not tightly associated with RNase MRP, a closely related ribonucleoprotein enzyme. These results show that the streptavidin aptamers are potentially powerful tools for the study of RNAs or RNPs.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D004722 Endoribonucleases A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-. Endoribonuclease
D000345 Affinity Labels Analogs of those substrates or compounds which bind naturally at the active sites of proteins, enzymes, antibodies, steroids, or physiological receptors. These analogs form a stable covalent bond at the binding site, thereby acting as inhibitors of the proteins or steroids. Affinity Labeling Reagents,Labeling Reagents, Affinity,Labels, Affinity,Reagents, Affinity Labeling
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012261 Ribonucleoproteins Complexes of RNA-binding proteins with ribonucleic acids (RNA). Ribonucleoprotein
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D016337 RNA, Catalytic RNA that has catalytic activity. The catalytic RNA sequence folds to form a complex surface that can function as an enzyme in reactions with itself and other molecules. It may function even in the absence of protein. There are numerous examples of RNA species that are acted upon by catalytic RNA, however the scope of this enzyme class is not limited to a particular type of substrate. Catalytic RNA,Ribozyme,Ribozymes
D043262 Ribonuclease P An RNA-containing enzyme that plays an essential role in tRNA processing by catalyzing the endonucleolytic cleavage of TRANSFER RNA precursors. It removes the extra 5'-nucleotides from tRNA precursors to generate mature tRNA molecules. Ribonuclease P, RNA Catalytic Subunit,RNA Catalytic Subunit, Ribonuclease P,RNase P

Related Publications

C Srisawat, and D R Engelke
April 2009, Acta biochimica et biophysica Sinica,
C Srisawat, and D R Engelke
June 2012, Biochemical and biophysical research communications,
C Srisawat, and D R Engelke
October 2004, Analytical biochemistry,
C Srisawat, and D R Engelke
January 2024, Methods in molecular biology (Clifton, N.J.),
C Srisawat, and D R Engelke
November 2006, Analytical and bioanalytical chemistry,
C Srisawat, and D R Engelke
April 2012, Chembiochem : a European journal of chemical biology,
C Srisawat, and D R Engelke
January 2020, Current protein & peptide science,
Copied contents to your clipboard!