Peptide binding to active class II MHC protein on the cell surface. 2001

J F Vacchino, and H M McConnell
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

Solution studies have demonstrated the existence of two functionally distinct isomers of empty class II MHC: an active isomer that binds peptide and an inactive isomer that does not. Empty MHC molecules on the surface of APCs can load antigenic peptides directly from the extracellular medium, facilitating the generation of a diverse peptide repertoire for T cell presentation. In this report, we examine I-Ek on the surface of Chinese hamster ovary cells with respect to the active and inactive isomers. As in the case of purified soluble active I-Ek, active I-Ek on the cell surface is unstable, decaying to the inactive form in approximately 14 min. Evidence is presented suggesting that at steady state <1% of the total cell surface I-Ek is active and that a significant fraction of these active molecules originates from intracellular pools as well as reactivation of inactive cell surface I-EK.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009036 Moths Insects of the suborder Heterocera of the order LEPIDOPTERA. Antheraea,Giant Silkmoths,Giant Silkworms,Silkmoths, Giant,Silkworms, Giant,Antheraeas,Giant Silkmoth,Giant Silkworm,Moth,Silkmoth, Giant,Silkworm, Giant
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002738 Chloroquine The prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. Aralen,Arechine,Arequin,Chingamin,Chlorochin,Chloroquine Sulfate,Chloroquine Sulphate,Khingamin,Nivaquine,Sulfate, Chloroquine,Sulphate, Chloroquine
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J F Vacchino, and H M McConnell
November 1997, Cellular immunology,
J F Vacchino, and H M McConnell
February 2000, Biochemistry,
J F Vacchino, and H M McConnell
April 1994, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica,
J F Vacchino, and H M McConnell
March 2012, Proceedings of the National Academy of Sciences of the United States of America,
J F Vacchino, and H M McConnell
January 1997, Biopolymers,
J F Vacchino, and H M McConnell
October 1994, Molecular immunology,
J F Vacchino, and H M McConnell
November 2006, Bioinformatics (Oxford, England),
J F Vacchino, and H M McConnell
May 1997, Journal of immunological methods,
Copied contents to your clipboard!