[Structural basis of the interaction between immunoglobulins and Fc receptors provided by NMR spectroscopy]. 2001

K Kato
Faculty of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.

Fc gamma Receptors (Fc gamma R) are membrane glycoproteins that bind the Fc portion of immunoglobulin G (IgG). The cross linking of Fc gamma R-bound IgG by multivalent antigens allows clustering of the Fc gamma R and initiates a variety of effector mechanisms which play a key role in immune defenses against pathogens. The Fc region is composed of two identical polypeptide chains, which are related to each other by a two-fold axis. Recent elucidation of the crystal structure of human Fc gamma RII provided two distinct views of modes of IgG-Fc gamma R interactions, which is controversial against each other. Nuclear magnetic resonance (NMR) spectroscopy provides a unique and irreplaceable tool to solve these issues. We recently studied the interaction between the Fc fragment of mouse IgG2b and the extracellular domain of mouse Fc gamma RII by this method. We showed that Fc gamma RII binds to a negatively charged area of the CH2 domain, corresponding to the lower hinge region, and that the binding of Fc gamma RII onto one of the two symmetrically related sites on the Fc induces a conformational change in the other site. This conformational change may account for the 1:1 stoichiometry that we and others observed between Fc gamma R and Fc. We therefore propose a model that explains why the interaction between IgG molecules and Fc gamma R does not trigger cellular responses in the absence of cross linking by multivalent antigens and does not lead to spontaneous inflammatory responses that would be deleterious for the organism.

UI MeSH Term Description Entries
D007109 Immunity Nonsusceptibility to the invasive or pathogenic effects of foreign microorganisms or to the toxic effect of antigenic substances. Immune Process,Immune Response,Immune Processes,Immune Responses,Process, Immune,Response, Immune
D007136 Immunoglobulins Multi-subunit proteins which function in IMMUNITY. They are produced by B LYMPHOCYTES from the IMMUNOGLOBULIN GENES. They are comprised of two heavy (IMMUNOGLOBULIN HEAVY CHAINS) and two light chains (IMMUNOGLOBULIN LIGHT CHAINS) with additional ancillary polypeptide chains depending on their isoforms. The variety of isoforms include monomeric or polymeric forms, and transmembrane forms (B-CELL ANTIGEN RECEPTORS) or secreted forms (ANTIBODIES). They are divided by the amino acid sequence of their heavy chains into five classes (IMMUNOGLOBULIN A; IMMUNOGLOBULIN D; IMMUNOGLOBULIN E; IMMUNOGLOBULIN G; IMMUNOGLOBULIN M) and various subclasses. Globulins, Immune,Immune Globulin,Immune Globulins,Immunoglobulin,Globulin, Immune
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

K Kato
September 1985, Molecular immunology,
K Kato
November 1993, Biochemical Society transactions,
K Kato
September 2007, Journal of structural and functional genomics,
K Kato
March 1986, Biochemical and biophysical research communications,
K Kato
November 1996, Veterinary immunology and immunopathology,
K Kato
April 1976, Acta pathologica et microbiologica Scandinavica. Section C, Immunology,
K Kato
January 1996, Annual review of cell and developmental biology,
K Kato
June 1996, European journal of immunology,
Copied contents to your clipboard!