Targeting superoxide dismutase to renal proximal tubule cells inhibits mitochondrial injury and renal dysfunction inuduced by cisplatin. 2001

M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
Department of Biochemistry, Osaka City University Medical School, Japan. nishikawa@med.osaka-cu.ac.jp

We recently reported the synthesis of a cationic superoxide dismutase (SOD) derivative (AH-SOD) that rapidly and selectively accumulates in and around proximal tubule cells and effectively dismutes superoxide radicals in situ. The present study revealed that administration of cis-diamminedichloroplatinum(II)-elicited oxidative stress in renal mitochondria, decreased the renal expression of Bcl-x, released cytochrome c from mitochondria to cytosol, and induced apoptosis and renal dysfunction by a mechanism that was inhibited by AH-SOD. These results suggest that targeting SOD to proximal tubule cells protects renal function and permits the administration of fairly high doses of nephrotoxic anticancer agents, such as cisplatin, without causing renal injury.

UI MeSH Term Description Entries
D007677 Kidney Function Tests Laboratory tests used to evaluate how well the kidneys are working through examination of blood and urine. Function Test, Kidney,Function Tests, Kidney,Kidney Function Test,Test, Kidney Function,Tests, Kidney Function
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002945 Cisplatin An inorganic and water-soluble platinum complex. After undergoing hydrolysis, it reacts with DNA to produce both intra and interstrand crosslinks. These crosslinks appear to impair replication and transcription of DNA. The cytotoxicity of cisplatin correlates with cellular arrest in the G2 phase of the cell cycle. Platinum Diamminodichloride,cis-Diamminedichloroplatinum(II),cis-Dichlorodiammineplatinum(II),Biocisplatinum,Dichlorodiammineplatinum,NSC-119875,Platidiam,Platino,Platinol,cis-Diamminedichloroplatinum,cis-Platinum,Diamminodichloride, Platinum,cis Diamminedichloroplatinum,cis Platinum
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
April 2003, Free radical research,
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
January 2002, Redox report : communications in free radical research,
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
January 2017, In vivo (Athens, Greece),
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
May 2010, American journal of physiology. Renal physiology,
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
August 2021, Antioxidants (Basel, Switzerland),
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
August 1999, Archives of biochemistry and biophysics,
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
August 2013, Proceedings of the National Academy of Sciences of the United States of America,
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
December 2001, Journal of the American Society of Nephrology : JASN,
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
April 2016, Bioconjugate chemistry,
M Nishikawa, and H Nagatomi, and B J Chang, and E Sato, and M Inoue
October 1997, Nitric oxide : biology and chemistry,
Copied contents to your clipboard!