Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. 2001

S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
National Food Research Institute, Ministry of Agriculture Forestry and Fisheries, 2-1-2 Kannondai, Tsukuba 305-8642, Japan.

Activities of enzymes involved in hepatic fatty acid oxidation and synthesis among rats fed sesame (Sesamum indicum L.) differing in lignan content (sesamin and sesamolin) were compared. Sesame seeds rich in lignans from two lines, 0730 and 0732, lines established in this laborary, and those from a conventional cultivar (Masekin) were employed. Seeds from the 0730 and 0732 lines contained sesamin and sesamolin at amounts twice those from Masekin. Sesame seeds were added at levels of 200 g/kg to the experimental diets. Sesame increased both the hepatic mitochondrial and the peroxisomal fatty acid oxidation rate. Increases were greater with sesame rich in lignans than with Maskin. Noticeably, peroxisomal activity levels were >3 times higher in rats fed diets containing sesame seeds from the 0730 and 0732 lines than in those fed a control diet without sesame. The diet containing Masekin seed caused only a 50% increase in the value, however. Diets containing seeds from the 0730 and 0732 lines, compared to the control and Masekin diets, also significantly increased the activity of hepatic fatty acid oxidation enzymes including acyl-CoA oxidase, carnitine palmitoyltranferase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase. In contrast, diets containing sesame lowered the activity of enzymes involved in fatty acid synthesis including fatty acid synthase, glucose-6-phosphate dehydrogenase, ATP-citrate lyase, and pyruvate kinase. No significant differences in enzyme activities were, however, seen among diets containing sesame from Masekin cultivar and lines 0730 and 0732. Serum triacylglycerol concentrations were lower in rats fed diets containing sesame from lines 0730 and 0732 than in those fed the control or Masekin diet. It is apparent that sesame rich in lignans more profoundly affects hepatic fatty acid oxidation and serum triacylglycerol levels. Therefore, consumption of sesame rich in lignans results in physiological activity to alter lipid metabolism in a potentially beneficial manner.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D004149 Dioxoles
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000975 Antioxidants Naturally occurring or synthetic substances that inhibit or retard oxidation reactions. They counteract the damaging effects of oxidation in animal tissues. Anti-Oxidant,Antioxidant,Antioxidant Activity,Endogenous Antioxidant,Endogenous Antioxidants,Anti-Oxidant Effect,Anti-Oxidant Effects,Anti-Oxidants,Antioxidant Effect,Antioxidant Effects,Activity, Antioxidant,Anti Oxidant,Anti Oxidant Effect,Anti Oxidant Effects,Anti Oxidants,Antioxidant, Endogenous,Antioxidants, Endogenous
D012639 Seeds The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield. Diaspores,Elaiosomes,Embryos, Plant,Plant Embryos,Plant Zygotes,Zygotes, Plant,Diaspore,Elaiosome,Embryo, Plant,Plant Embryo,Plant Zygote,Seed,Zygote, Plant

Related Publications

S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
February 2009, Journal of nutritional science and vitaminology,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
January 2007, The British journal of nutrition,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
January 2015, Journal of oleo science,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
October 1999, Metabolism: clinical and experimental,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
January 1968, Voprosy pitaniia,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
May 2002, The Journal of nutritional biochemistry,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
July 2023, Food science & nutrition,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
August 2022, Journal of food biochemistry,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
December 1974, Indian journal of biochemistry & biophysics,
S Sirato-Yasumoto, and M Katsuta, and Y Okuyama, and Y Takahashi, and T Ide
November 2001, Biochimica et biophysica acta,
Copied contents to your clipboard!