Activity of three aminoglycosides and two penicillins against four species of gram-negative bacilli. 1975

R J Weinstein, and L S Young, and W L Hewitt

Three aminoglycoside antibiotics and two penicillins were compared for their in vitro activity against 60 isolates of Serratia, Pseudomonas, Proteus mirabilis, and indole-positive Proteus sp. Testing was done by the agar dilution method using Mueller-Hinton broth solidified with 1.5% agar. The activity of amikacin, aminodeoxybutirosin, and gentamicin against Proteus and Pseudomonas, as related to their peak blood levels, showed no significant differences. Amikacin was the most active against Serratia marcescens. Results using Mueller-Hinton media in broth dilution tests correlated with the agar dilution method except for Pseudomonas aeruginosa. The minimal inhibitory concentration for aminoglycosides in agar was considerably greater than the minimal inhibitory concentration in Mueller-Hinton broth, and the disparity was related to the higher divalent cation concentration of agar. BL-P1654 and carbenicillin were similar except that carbenicillin was much more active against indole-positive Proteus sp. Additionally, the ratio of bactericidal to bacteriostatic concentrations of BL-P1654 was considerably greater than for carbenicillin.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D010406 Penicillins A group of antibiotics that contain 6-aminopenicillanic acid with a side chain attached to the 6-amino group. The penicillin nucleus is the chief structural requirement for biological activity. The side-chain structure determines many of the antibacterial and pharmacological characteristics. (Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1065) Antibiotics, Penicillin,Penicillin,Penicillin Antibiotics
D000617 Aminoglycosides Glycosylated compounds in which there is an amino substituent on the glycoside. Some of them are clinically important ANTIBIOTICS. Aminoglycoside
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D001419 Bacteria One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. Eubacteria

Related Publications

R J Weinstein, and L S Young, and W L Hewitt
February 1964, Nature,
R J Weinstein, and L S Young, and W L Hewitt
April 1987, Mikrobiyoloji bulteni,
R J Weinstein, and L S Young, and W L Hewitt
October 1980, Antimicrobial agents and chemotherapy,
R J Weinstein, and L S Young, and W L Hewitt
January 1984, Chemotherapy,
R J Weinstein, and L S Young, and W L Hewitt
January 1979, The Journal of antimicrobial chemotherapy,
R J Weinstein, and L S Young, and W L Hewitt
December 1985, Revista medica de Chile,
R J Weinstein, and L S Young, and W L Hewitt
February 1963, Journal of bacteriology,
R J Weinstein, and L S Young, and W L Hewitt
August 1983, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!