Structure-function studies of human 5-alpha reductase type 2 using site directed mutagenesis. 2001

F O Baxter, and S Trivic, and I R Lee
School of Biomedical Sciences, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia.

Site directed mutagenesis of human steroid 5alpha-reductase types 1 (5AR1) and 2 (5AR2) has been used to identify residues involved in inhibitor/substrate binding by 5AR2. Replacing residues 21-24 (GALA) in 5AR2 with the analogous residues 26-29 (AVFA) from 5AR1 did not significantly alter either the Km for testosterone or the Ki for the competitive inhibitor Finasteride. Replacement of AVFA in 5AR1 with GALA from 5AR2 however, significantly decreased the Km and increased the resistance to Finasteride. These findings confirm that 5AR1 residues 26-29 are involved in inhibitor/substrate binding but suggest residues 21-24 of 5AR2 are not. Replacing residues 20-29 (QCAVGCAVFA) of 5AR1 with the analogous residues 15-24 (ATLVALGALA) from 5AR2, changed the Km and Ki to values approaching those for wild type 5AR2. Replacing residues VAL in wild type 5AR2 with VGC from 5AR1 did not change Km or Ki but replacing ATL in 5AR2 with QCA from 5AR1 significantly decreased the Km and increased the resistance to Finasteride. Conversely, replacing QCA with ATL in 5AR1 containing GALA in place of AVFA, increased the Km and decreased resistance to Finasteride. These findings indicate residues 15-17 of human 5AR2 participate in inhibitor/substrate binding whereas residues 18-20 do not.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D013741 3-Oxo-5-alpha-Steroid 4-Dehydrogenase An enzyme that catalyzes the reduction of TESTOSTERONE to 5-ALPHA DIHYDROTESTOSTERONE. 3-Keto-5-alpha-Steroid delta-4-Dehydrogenase,5-alpha-Reductase, Testosterone,Testosterone 5-alpha-Reductase,Testosterone delta-4-5-alpha-Reductase,3-oxo-5 alpha-Steroid 4-Dehydrogenase (NADP+),3-oxo-5alpha-Steroid 4-Dehydrogenase (NADP+),4-Ene-3-Oxosteroid-5alpha-Reductase,4-Ene-5-alpha-Reductase,NADH-5-alpha-Reductase,NADPH delta(4)-3-Ketosteroid 5 alpha-Oxidoreductase,Steroid 5-alpha-Reductase,Steroid 5Alpha Reductase,Steroid delta-4-5-alpha Reductase,delta 4-3-keto Steroid 5 alpha-Oxidoreductase,delta(4)-3-Ketosteroid-5alpha-Reductase,delta4-3-ketosteroid 5alpha-Oxidoreductase,3 Keto 5 alpha Steroid delta 4 Dehydrogenase,3 Oxo 5 alpha Steroid 4 Dehydrogenase,4 Ene 3 Oxosteroid 5alpha Reductase,4 Ene 5 alpha Reductase,5 alpha Reductase, Testosterone,5-alpha-Reductase, Steroid,5Alpha Reductase, Steroid,5alpha-Oxidoreductase, delta4-3-ketosteroid,NADH 5 alpha Reductase,Reductase, Steroid 5Alpha,Reductase, Steroid delta-4-5-alpha,Steroid 5 alpha Reductase,Steroid delta 4 5 alpha Reductase,Testosterone 5 alpha Reductase,Testosterone delta 4 5 alpha Reductase,delta 4 3 keto Steroid 5 alpha Oxidoreductase,delta-4-5-alpha Reductase, Steroid,delta-4-5-alpha-Reductase, Testosterone,delta-4-Dehydrogenase, 3-Keto-5-alpha-Steroid,delta4 3 ketosteroid 5alpha Oxidoreductase
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F O Baxter, and S Trivic, and I R Lee
June 1994, The Biochemical journal,
F O Baxter, and S Trivic, and I R Lee
January 1993, Chinese journal of biotechnology,
F O Baxter, and S Trivic, and I R Lee
January 1995, Advances in experimental medicine and biology,
F O Baxter, and S Trivic, and I R Lee
April 1992, The Biochemical journal,
F O Baxter, and S Trivic, and I R Lee
January 1995, International journal of peptide and protein research,
F O Baxter, and S Trivic, and I R Lee
May 1988, Biochemistry,
F O Baxter, and S Trivic, and I R Lee
February 1991, Journal of cellular biochemistry,
F O Baxter, and S Trivic, and I R Lee
November 2001, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
F O Baxter, and S Trivic, and I R Lee
May 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!