Biogenesis of erythrocyte membrane proteins. In vivo studies in anemic rabbits. 1975

P A Koch, and J E Gartrell, and F H Gardner, and J R Carter

To study the process of red cell membrane protein synthesis we have followed the time course of [3-H]leucine appearance in total protein and individual peptides of the erythrocyte membrane following injection of the amino acid into phenylhydrazine-anemic rabbits. Multiple peripheral blood samples were taken from single animals over a 5-week period. Erythrocyte membrane proteins were separated by polyacrylamide gel electrophoresis in sodium dodecylsulfate and dithiothreitol; incorporation of radioactivity was determined by gel slicing and liquid scintillation spectrometry. Appearance of [3-H]leucine in circulating erythrocytes reached a peak at 1-3 days, with a steady decline thereafter. The radioactive amino acid appeared first in the lowest molecular weight peptides and last in the largest peptides; at the earliest time point (8 h), little radioactivity was observed in any of the four largest peptides present in the membranes (bands A, 1, 2 and 3). Certain smaller peptides (bands 4, 5 and 9) were the predominant species labeled at this time. By 24 h all peptides showed significant incorporation. With maturation of the red cells, label largely disappeared from bands A, 9 and several smaller peptides; this was confirmed by finding that the peptides are virtually absent from mature circulating erythrocytes. These data are interpreted as showing that red cell membrane proteins are synthesized asynchronously during the life cycle of the erythrocyte; the largest peptides are made predominantly in the earlier marrow stages of development, while certain of the smaller peptides are still being synthesized in the reticulocyte stage. Several membrane proteins appear to be specific to the reticulocyte and are lost during the process of cell maturation in the circulation.

UI MeSH Term Description Entries
D007930 Leucine An essential branched-chain amino acid important for hemoglobin formation. L-Leucine,Leucine, L-Isomer,L-Isomer Leucine,Leucine, L Isomer
D008297 Male Males
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010659 Phenylhydrazines Diazo derivatives of aniline, used as a reagent for sugars, ketones, and aldehydes. (Dorland, 28th ed)
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D012156 Reticulocytes Immature ERYTHROCYTES. In humans, these are ERYTHROID CELLS that have just undergone extrusion of their CELL NUCLEUS. They still contain some organelles that gradually decrease in number as the cells mature. RIBOSOMES are last to disappear. Certain staining techniques cause components of the ribosomes to precipitate into characteristic "reticulum" (not the same as the ENDOPLASMIC RETICULUM), hence the name reticulocytes. Reticulocyte
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
January 1983, Methods in enzymology,
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
January 1997, Free radical biology & medicine,
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
July 1970, Seminars in hematology,
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
January 1977, Annales de biologie clinique,
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
August 2009, Current opinion in cell biology,
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
January 1982, Progress in clinical and biological research,
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
May 1993, Stem cells (Dayton, Ohio),
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
August 1996, Clinical biochemistry,
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
January 1981, Methods of biochemical analysis,
P A Koch, and J E Gartrell, and F H Gardner, and J R Carter
October 1981, Neurology,
Copied contents to your clipboard!