Target genes of peroxisome proliferator-activated receptor gamma in colorectal cancer cells. 2001

R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
Departments of Medicine and Cell Biology, Vanderbilt University Medical Center and Veterans Affairs Medical Center, Nashville, Tennessee 37232, USA.

Activation of the nuclear hormone peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits cell growth and promotes differentiation in a broad spectrum of epithelial derived tumor cell lines. Here we utilized microarray technology to identify PPARgamma gene targets in intestinal epithelial cells. For each gene, the induction or repression was seen with two structurally distinct PPARgamma agonists, and the change in expression could be blocked by co-treatment with a specific PPARgamma antagonist. A majority of the genes could be regulated independently by a retinoid X receptor specific agonist. Genes implicated in lipid transport or storage (adipophilin and liver fatty acid-binding protein) were also activated by agonists of PPAR subtypes alpha and/or delta. In contrast, PPARgamma-selective targets included genes linked to growth regulatory pathways (regenerating gene IA), colon epithelial cell maturation (GOB-4 and keratin 20), and immune modulation (neutrophil-gelatinase-associated lipocalin). Additionally, three different genes of the carcinoembryonic antigen family were induced by PPARgamma. Cultured cells treated with PPARgamma ligands demonstrated an increase in Ca(2+)-independent, carcinoembryonic antigen-dependent homotypic aggregation, suggesting a potential role for PPARgamma in regulating intercellular adhesion. Collectively, these results will help define the mechanisms by which PPARgamma regulates intestinal epithelial cell biology.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008156 Luciferases Enzymes that oxidize certain LUMINESCENT AGENTS to emit light (PHYSICAL LUMINESCENCE). The luciferases from different organisms have evolved differently so have different structures and substrates. Luciferase
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
January 2010, PPAR research,
R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
February 2004, Cellular and molecular life sciences : CMLS,
R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
September 2018, Panminerva medica,
R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
March 2007, Anti-cancer drugs,
R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
April 2008, International journal of oncology,
R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
April 2009, Cancer biology & therapy,
R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
December 2007, Journal of cancer research and clinical oncology,
R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
July 2002, The Journal of laboratory and clinical medicine,
R A Gupta, and J A Brockman, and P Sarraf, and T M Willson, and R N DuBois
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!