Purification and catalytic properties of the chlorophenol 4-monooxygenase from Burkholderia cepacia strain AC1100. 2001

G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS UMR 8601, Université René Descartes, Paris V, 45 rue des Saints Pères, 75270 Cedex 06, Paris, France.

Burkholderia cepacia strain AC1100 can be induced for the degradation of 2,4,5-trichlorophenol (2,4,5-TCP). We have purified the active enzyme 30-fold to apparent homogeneity with a 44% yield by a two-step chromatographic procedure, and showed that it consists of a single type of subunit of 59 kDa based on SDS-PAGE using Coomassie blue and Sypro staining. This enzyme has no bound prosthetic group but requires exogenous addition of FAD and NADH to perform the dioxygen-dependent hydroxylation in the 4-position of 2,4,6-TCP. Studies of the stoichiometry revealed the consumption of 2 mol of NADH plus 1 mol of dioxygen per mol of 2,4,6-TCP with identification of the reaction product as 2,6-dichlorohydroquinone. Steady state kinetic parameters for cofactors and a variety of substrates were determined. Low K(m) values of 1+/-0.1 microM, 32+/-5 microM and 4+/-2 microM were found for FAD, NADH and 2,6-dichlorophenol (2,6-DCP), respectively, under saturating conditions for the two others. In the presence of 2,6-DCP as a substrate, methimazole (MMI) inhibited the enzyme competitively with a K(i)=27 microM. When other polychlorinated substrates were studied, IC(50) values for MMI were found in a range compatible with their apparent affinity. On the basis of aromatic product formation, NADH and O(2) consumption schemes for 2,4,6-TCP and 2,4,5-TCP degradation are discussed. A Blast search revealed that this enzyme has a high sequence identity (60%) with 2,4,6-TCP-4-monooxygenases from Burkholderia pickettii and from Azotobacter sp. strain GP1 which all of them catalyze para hydroxylative dehalogenation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002733 Chlorophenols Phenols substituted with one or more chlorine atoms in any position. Chlorophenol,Hydroxychlorobenzenes
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D016956 Burkholderia cepacia A species of BURKHOLDERIA considered to be an opportunistic human pathogen. It has been associated with various types of infections of nosocomial origin. Pseudomonas cepacia,Pseudomonas kingii,Pseudomonas multivorans

Related Publications

G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
May 1996, Journal of bacteriology,
G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
January 2010, The Journal of biological chemistry,
G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
October 1995, Biochemistry,
G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
November 1996, Gene,
G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
September 1995, Applied and environmental microbiology,
G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
October 2005, Wei sheng wu xue bao = Acta microbiologica Sinica,
G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
December 1977, The Journal of biological chemistry,
G Martin-Le Garrec, and I Artaud, and C Capeillère-Blandin
November 1983, Applied and environmental microbiology,
Copied contents to your clipboard!