Purification and properties of the enzymes from Drosophila melanogaster that catalyze the synthesis of sepiapterin from dihydroneopterin triphosphate. 1979

G G Krivi, and G M Brown

Sepiapterin synthase, the enzyme system responsible for the synthesis of sepiapterin from dihydroneopterin triphosphate, has been partially purified from extracts of the heads of young adult fruit flies (Drosophila melanogaster). The sepiapterin synthase system consists of two components, termed "enzyme A" (MW 82,000) and "enzyme B" (MW 36,000). Some of the properties of the enzyme system are as follows: NADPH and a divalent cation, supplied most effectively as MgCl2, are required for activity; optimal activity occurs are pH 7.4 and 30 C; the Km for dihydroneopterin triphosphate is 10 microM; and a number of unconjugated pterins, including biopterin and sepiapterin, are inhibitory. Dihydroneopterin cannot be used as substrate in place of dihydroneopterin triphosphate. Evidence is presented in support of a proposed reaction mechanism for the enzymatic conversion of dihydroneopterin triphosphate to sepiapterin in which enzyme A catalyzes the production of a labile intermediate by nonhydrolytic elimination of the phosphates of dihydroneopterin triphosphate, and enzyme B catalyzes the conversion of this intermediate, in the presence of NADPH, to sepiapterin. An analysis of the activity of sepiapterin synthase during development in Drosophila revealed the presence of a small amount of activity in eggs and young larvae and a much larger amount in late pupae and young adults. Sepiapterin synthase activity during development corresponds with the appearance of sepiapterin in the flies. Of a variety of eye color mutants of Drosophila melanogaster tested for sepiapterin synthase activity, only purple (pr) flies contained activity that was significantly lower than that found in the wild-type flies (22% of the wild-type activity). Further studies indicated that the amount of enzyme A activity is low in purple flies, whereas the amount of enzyme B activity is equal to that present in wild-type flies.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D009097 Multienzyme Complexes Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. Complexes, Multienzyme
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009943 Organophosphorus Compounds Organic compounds that contain phosphorus as an integral part of the molecule. Included under this heading is broad array of synthetic compounds that are used as PESTICIDES and DRUGS. Organophosphorus Compound,Organopyrophosphorus Compound,Organopyrophosphorus Compounds,Compound, Organophosphorus,Compound, Organopyrophosphorus,Compounds, Organophosphorus,Compounds, Organopyrophosphorus
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011622 Pterins Compounds based on 2-amino-4-hydroxypteridine. Pterin
D011679 Pupa An inactive stage between the larval and adult stages in the life cycle of INSECTA. Chrysalis,Pupae
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila

Related Publications

G G Krivi, and G M Brown
January 1996, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology,
G G Krivi, and G M Brown
March 1948, Archives of biochemistry,
G G Krivi, and G M Brown
December 1982, The Journal of biological chemistry,
G G Krivi, and G M Brown
August 1981, The Journal of biological chemistry,
G G Krivi, and G M Brown
April 1983, Biochimica et biophysica acta,
Copied contents to your clipboard!